NuFact conference

WG7: Inclusion, Diversity, Equity, Education and Outreach (IDEEO) 2022-08-05

3D visualization of astronomy data using virtual reality

Gilles Ferrand

Research Scientist, Astrophysical Big Bang Laboratory, RIKEN (currently visiting the University of Manitoba)
+ Jayanne English, Don Warren

What do we mean by 3D visualization?

The world as represented in the visual arts tradition

The world as we actually perceive it

2D	flat 3D	stereo 3D	immersive 3D
slices/ projections	perspective and shading	stereoscopy (fixed viewpoint)	stereoscopy + motion parallax (can explore the scene)

on any personal computer

on advanced displays: dual projectors, tracking cameras

fish tanks

a CAVE by Visbox

the zSpace tabletop

headsets

the "Rift" by Oculus (Facebook)

the "Vive" by HTC / Valve

The landscape for VR headsets (early 2020s)

internal tracking ("inside out")

external tracking

PC-tethered

all are 6 d.o.f.

HTC Vive Cosmos 2019 \$400+

HTC Vive Pro 2018 \$1000+

Valve Index 2019 \$1000

Pimax 4K / 5K / 8K 2016+

Windows Mixed Reality Headsets by Acer, ASUS, Dell, HP, Lenovo, Samsung 2017+

"all in one": embedded computing power and tracking

varying d.o.f.

Meta Quest 2 2020 \$400+

HTC Vive Focus 3 2021 \$1500

"mobile VR" with a smartphone

most are 3 d.o.f.

Google Cardboard 2014 \$10

and many more

University of Manitoba (Winnipeg, Canada) 2016/08

Unity as a development platform

PROS

- widely used in the (growing) gaming industry: millions of users, continuous development (a momentum that scientists simply cannot get)
- has already been used for "serious" applications,
 e.g. medical and architectural, also natural sciences
- already used by the HCI lab for their research
- high-level programming
- cross-platform (all OS, desktop/web/mobile)
- support for all the advanced displays

CONS

- not tailored for our needs, performance?
- pretty confidential in our community

VR with the Unity engine and a VIVE headset

Scientific visualization of 3D data cubes

How to proceed in 3D?

(Here assuming scalar data – more techniques for vector/tensor fields)

extract a shape, e.g. by isocontouring, as a "mesh", and render it using standard computer graphics techniques (needs external lighting) assign a colour and opacity to each grid cell (voxel), cast "rays" inside the cube and integrate along the line of sight (data is shining on its own)

iso-surfaces

volume rendering

Using VR to communicate our work

"Theories of Astrophysical Big Bangs" 2017-11-06-10

A great tool for public engagement

A great tool for public engagement

A great tool for public engagement

The SN2SNR VR experience

The Cube2 VR experience

NGC 3198 [HI] SN2SNR

Conclusion

Our brains work in 3D, and we do have 3D displays

- How can we use the technology to better understand our data (from observations or simulations) and accelerate our research?
- We can certainly use it for public outreach, to engage the public more actively!

http://ithems-members.riken.jp/warren/vrav https://chandra.harvard.edu/vr/vr.html https://fpavogt.github.io/E0102-VR/

We welcome new collaborators, including non-academic partners