# The Camera System for the IceCube Upgrade

Woosik Kang on behalf of the IceCube Collaboration





NuFACT 2022 - WG6: Detectors Snowbird, UT August. 5th, 2022

#### IceCube Neutrino Observatory



- IceCube is the world's largest neutrino telescope
- 1 km<sup>3</sup> detector volume located at the South Pole
- Utilising the pure Antarctic ice as a medium to detect Cherenkov lights from charged relativistic particles created in neutrino interactions



#### Antarctic ice



- The Antarctic glacier at the South Pole is compacted snow up to 100,000 years old
- The ice is well understood from various IceCube calibration campaigns
- The ice model 'SPICE' developed for all IceCube analysis





#### Calibrations in IceCube







12 LEDs aboard each DOM; Flasher

404nm laser + in-situ photon counter; *Dust Logger* 

- A lot of calibration devices for various campaigns
  - Ice properties, geometry, timing, energy, ...
- Precise characterisation of the optical properties of the detector medium to reduce the uncertainties in the reconstruction of neutrino events



2 steerable camera systems; Swedish Camera

#### Refrozen hole ice



4 Mar 2011



- Propagation distances dominated by glacial ice, but every detected photon also has to pass through refrozen drill column
- Swedish Camera observed clear outer layer & bubbly central column about half the size of the DOMs
- Size confirmed, and relative position to each DOM and effective scattering length (~2.5cm)
  calibrated using LED data
- There is good reason to expect that ice environments in vicinity of each DOM can significantly differ
- The uncertainties on SPICE remain as one of the major systematic errors

### IceCube Upgrade













Horizontal string spacing: 20m

PoS(ICRC2019)1031, PoS(ICRC2021)1042, PoS(ICRC2021)1070

Vertical module spacing: 3m

- An upgrade with seven densely instrumented strings in the centre of active volume of the IceCube detector, which is currently under construction
  - To enhance the capability to detect neutrinos in the GeV range for the measurement of the unitarity of the PMNS matrix
  - To reduce ice properties related systematic uncertainties in the IceCube analyses by re-calibration of the IceCube detector
- Newly developed optical sensors with new calibration devices



See M. DuVernois's talk







- (Re-)Calibration campaigns will lead the comprehensive understanding of the IceCube detector medium
  - Science multiplier: retroactively analyse more than 15 years of IceCube data with substantially improved angular and energy resolutions
  - Enhanced neutrino event pointing: critical for multi-messenger science
- A lot of newly developed/improved calibration devices to be deployed in the holes or to be installed within the optical modules
  - On-board, fixed focus cameras, IceCube Upgrade Camera system, will be one of the key player to the campaign

#### IceCube Upgrade Camera System









- For each D-Egg, three outward facing cameras with attached illumination boards on a ring structure
- In total, 900 cameras (for 300 D-Egg modules) were produced and have been integrated into D-Eggs by now.

#### IceCube Upgrade Camera System









- For mDOM, two upward cameras, one downward camera, and one upward stand-alone LED
- In total, ~1300 cameras (for ~420 mDOM modules) are to be produced, and ~800 cameras are already completed by now

#### Measurement schemes



#### Hole ice

Mapping local hole profile (hole ice / bulk ice)

Location of bubble column

Impurities / cracks / ...

transmission / reflection at interface hole/bulk ice

#### Freeze in process

Dust / contanimants deposition on the surface

Formation / crushing of bubbles /degasing worked ?

Formation of cracks

**Triboluminescence** 

#### **Geometry (Positioning)**

DOM position relative to adjacent DOMs

Cable position

#### Geometry (DOM Orientation)

Orientation of camera DOM

Orientation of neighbouring DOM on adjacent string

Orientation of neighbouring DOM on same string

#### **Bulk ice properties**

Measurement of scattering length

Measurement of absorption length

Hole/Bulk ice interfaces

Anisotropy of light propagation

#### **Others**

Survey capability

Complementary Important Highest Priority

- Optical properties of ice in the vicinity of optical modules measured by capturing the light signature and analysing its distribution in the image data
- The relative orientation & position of each optical module surveyed from the examination of multiple images
- In-ice camera run plan to mitigate the impact on the detector up-time and the readiness for scientific events like supernova

#### Simulation studies

PoS(ICRC2019)928







#### Field tests







- In-water test at Gyeonggi Physical Education High school, Suwon, Korea
- In-ice test at SpiceCore hole, South Pole

#### IceCube-Gen2







J. Phys. G 48 060501

See M. DuVernois's talk in WG6 parallel on Tuesday



- 86 strings
- 125 m inter-string distance
- 60 OMs per string
- 1 km<sup>3</sup> volume



Gen2 Optical Module candidates (left: 16 PMT option, right: 18 PMT option)



### Camera system for IceCube-Gen2 August. 5th, 2022



- The conceptual design of the camera system for IceCube Gen2 would focus
  on the measurements on the refrozen ice in the drill hole
  - Images from the back-scattered lights will deliver the information of the refrozen ice in vicinity of each camera system
  - Due to the larger spacing between each Gen2 string, inter-string measurement with the camera system would be limited





### Summary and Outlook



- Cubic-kilometre photomultiplier arrays as realised in IceCube Neutrino Telescope offer unique insight into the Antarctic ice
- Derived optical properties are fundamental to detector understanding and required for precision neutrino physics/astronomy
- IceCube Upgrade will provide the improved calibration of the detector
  - A novel camera system will be used to characterise the properties of bulk ice and refrozen ice in the drill hole using transmission and reflection images
- The next generation detector will employ a similar concept of camera system to perform the comprehensive calibration of detector medium with other calibration devices

### Thank you for your attention:)



## Backups

#### Milestones to IceCube-Gen2





### Wavelength dependencies



- AMANDA (IceCube predecessor)
   measured absorption and scattering as a
   function of wavelength
- Absorption has weak dependence
  - Slowly increasing above 500nm due to vibrational excitation modes
  - Otherwise following Mie expectation
- Scattering strongly increasing towards smaller wavelength following Mie expectation and impurity prediction
  - Propagation distance longest ~400nm





### Dust Logger stratigraphy







- Horizontal fan of light emitted into ice
- Scattering centres can deflect light into PMT → Signal proportional to impurity density
- Yields high resolution (mm) stratigraphy, but not able to obtain absolute absorption and scattering coefficients

#### Anisotropy of the Antarctic Ice



 Observed charge from LED flashers depends on orientation of receiver DOM with respect to emitter DOM. Maximum intensity seen along the local ice flow direction





#### Anisotropy of the Antarctic Ice



- The birefringence explanation
  - Continued refraction and reflection on boundaries of birefringent crystals leads to:
    - Diffusion which is largest along the flow
    - A small deflection towards the flow axis
  - Diffusion & deflection given by average crystal size & shape
  - Detailed modelling of birefringence allows to deduce ice crystal properties (average shape & size, c-axis distributions, ...) as relevant to ice flow modelling using data from IceCube sampling individual photons at 125 m increments





### IceCube Upgrade Camera System



- The IceCube Upgrade Camera system is developed and produced by SKKU IceCube group
- The system consists of 2 PCBs an a M12 lens with fixed focus
- The camera uses a SONY IMX225 image sensor with 1312 x 979 pixels resolution
- The illumination system is a postage-stamp sized PCB with a single 1-W LED with a light profile width of 80 degrees



#### Camera communication





### Camera Acceptance Tests











### Swimming pool test

Horizontal Pixel Position

Horizontal Pixel Position



