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INTRODUCTION
➤ Everyone wants a fast, high efficiency and high purity trigger 

➤ +cost-effectiveness, redundancy, quick realisations etc… 

➤ In general, it directly determines the signal efficiency (=experimental sensitivity) of our 
experiments 

➤ We want more data, more physics, more, more & more… 

➤ Several solutions 

➤ Trigger-less (offline trigger w/ GPUs), hardware level vetos, extremely fast data 
pipeline + gigantic data storage… 

➤ … or using field programmable gate arrays (FPGAs) 

➤ This talk is based on arXiv:2010.16203 (Y. Nakazawa et.al.) + new studies mainly 
done by M. Miyataki
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COMET EXPERIMENT PHASE-I
➤ Searching for a μ-e conversion with sensitivity of O(10-15) in its Phase-I 

➤ Muon beam produced by impinging the 8 GeV proton beam onto the graphite target 

➤ Requires ~1018 total stopping muons per 150 days → 1010 µ-/sec 

➤ So many secondary particles will be expected inside the detectors 

➤ See Sam Dekkers talk for more details
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Fig. 4. Simulated CDC-hit map including hits from a 105-MeV conversion
electron. Each dot represents the hit position of charged particles. The “others”
includes heavy particles, such as alpha, triton, and heavy ions. The red and
black tilted boxes inside the inner wall of the CDC are Cherenkov counters
and scintillators of the CTH, respectively. The filled boxes represent CTH
counter hits.

between the conversion electron and background particles.
Fig. 4 shows a simulated conversion-electron trajectory over-
laying with background particles recorded within an event win-
dow of 1.1µs. The main background particles are protons from
the muon-nuclear-capture processes and low-energy electrons
from the gamma-ray interactions at the CDC walls. Notable
differences between background and signal hits appear in the
hit patterns and energy deposition. The conversion electron
makes a helical trajectory that is fully contained in the CDC
due to the magnetic field, as shown in Fig. 4. The track
will produce a series of neighboring hits in the azimuthal
direction at a radius given by the transverse momentum of the
conversion electron, and no or very few hits beyond this radius.
The low-energy electrons pass along the CDC wires, and their
trajectories are helical orbits with small radii, resulting in long-
lived hits on the same wire. The protons mostly have high
momenta and pass through the CDC from inside to outside
with a larger energy loss than the conversion electrons.

B. Classification Algorithm

In the hit classification stage, GBDTs are used to evaluate
whether the hits in the set of neighboring wires are consistent
with the expectations for a conversion electron. The signal-
like hits have larger GBDT-output values and are selected for
the event classification. Fig. 5 shows the CDC-hit maps before
(Fig. 5a) and after (Fig. 5b) applying the GBDTs. Red and blue
dots represent signal and background hits based on simulation
information. The dot size of Fig. 5b reflects the GBDT-output
value. While some background hits with large GBDT-output
still remain after applying GBDT, it is clear that GBDT can
classify the signal hits out of background hits. Therefore,
the deposited energy on the wire of interest and its radial
position are selected as the GBDT-input features. In order to
eliminate hits of the low-energy electrons, hit classifiers begin
with filtering the wires having long-lived hits. The energy
deposition of neighboring wires in the same layer is also
used to suppress low-energy electron hits. For the hardware
implementation, the input feature must be quantized so that
the total size of trigger data fits to the reasonable data transfer
rate between different FPGAs with the available FPGA logic

(a)

(b)
Fig. 5. Hit maps of the CDC (a) before and (b) after applying the GBDTs.
See the text for details.

Fig. 6. Procedures for the final trigger decision. CTH ID means an identifica-
tion number for each CTH counter. “T” (true) and “F” (false) mean triggered
and non-triggered sections, respectively. Hit counters of the CTH are filled
with red for the Cherenkov counters and black for the scintillation counters.

resources, such as the number of LUTs. The energy deposition
of each wire is compressed into 2 bits, as written in Section II.
Therefore, 6-input LUTs are used for the hit classification
using energy deposition from the wire of interest and two
neighboring wires. We implement a set of 6-input LUTs inside
the FPGA, and each set of 6-bit wire hit patterns is fed into
each different LUT depending on their radial position. Thus all
the input features (deposited energy, neighboring hit pattern,
and radial position) can be considered.

Fig. 6 describes the procedure of the final trigger decision
by the event classifier, which combines CDC and CTH trigger
information. The conversion electron leaves hits only in a part
of the CDC readout area, which is correlated with the CTH-
hit positions, as shown in Fig. 4. An active part of the CDC
is defined for each CTH counter to reject background hits
efficiently while keeping the conversion-electron hits. When
the number of signal-like hits in each active part exceeds a
threshold, the CDC trigger is generated for each CTH counter.
The CTH trigger provides the counter information passing the

CYLINDRICAL DETECTOR (CYDET)

➤ CDC 

➤ ~5,000 wires, 20 full-stereo layers for momentum measurement, typical drift time <400ns 

➤ Signal electrons’ trajectories fully contained inside the volume 

➤ CTH 

➤ 2 layers of 64 segmented plastic scintillator rings at both ends of CDC for the timing measurement 

➤ Suppress accidental events and low momentum particles by taking four-fold coincidence
4
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TRIGGER REQUIREMENTS
➤ Strong fake trigger suppression 

➤ Expected 4 fold coincidence rate is ~90kHz from fake events in CTH 

DAQ system requires <13kHz trigger rate (bottleneck = data processing rate)  

➤ At least 1/7 further suppression is needed while keeping the high signal acceptance 

➤ Fast online event selection 

➤ Less than 7 µsec latency is allowed (limited by the online buffer size) 

➤ Flexibility 

➤ Availability of the timely modification for possible changes in situations (BG rate, etc) 

➤ Multiple triggers (bi-products, calibrations, BG enriched etc.) 

➤ Stability
5
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COMET CENTRAL TRIGGER SYSTEM IN PHASE-I
➤ FC7 + FCT 

➤ Make a final trigger decision based 
on CDC trigger info + CTH 
trigger info + accelerator info 

➤ Distribute the trigger signal & a 
40MHz common clock to all 
readout and trigger modules
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COTTRI SYSTEM (1)

7

COTTRI Merger Board ×1COTTRI CDC Front-End ×10

COTTRI CTH Front-End ×12

FPGA : Virtex-5

ASD
ADC
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DisplayPort 

for trigger system

RJ-45 x2

170 mm

22
0 
m
m

Readout electronics : RECBE 20

RECBE configuration

Each color section 
: 1 RECBE

Overview 
48 ch/board × 104 boards 
Signal processing by FPGA, 
     Amp-Shaper Discriminator (ASD), and 
     Analog-to-Digital Convertor (ADC) 

Readout information 
Digitized waveform at 30 MHz 
• Energy-loss information 
• ADC : 2 Vp-p with 10-bit resolution 
Hit timing at 960 MHz 

Data compression for COTTRI 
Compress the10-bit ADC sample into 2 bit 
• 6-input LUTs implemented on an FPGA 
• 2 bit/wire for wire-of-interest and 2 neighboring wires

CDC readout board, 48ch/board ×104

COTTRI Merger Board ×2

CTH analog front-
end board (WIP) 

256 channels in total

COTTRI=COmeT TRIgger

Central Trigger 
System

CTH Trigger 

~90kHz 4-fold 
coincidence rate

CDC Trigger 

To exclude non-
trajectory events
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COTTRI SYSTEM (2)
➤ COTTRI CDC FE 

➤ Purely digital processing board by 
utilising FPGA (Kintex-7) and Multi-
Gibabit data Transfer technologies 
(MGT link) 

➤ 10 boards cover 100 CDC readout 
boards corresponding to 4,800 wires 

➤ Perform hit classifications to identify 
more signal-like hits compared to 
other proton/low-e hits 

➤ Send those information to COTTRI 
merger board through MGT link

8
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COTTRI SYSTEM (3)
➤ COTTRI CDC MB 

➤ Similar to COTTRI CDC FE (same 
FPGA, same MGT links) 

➤ Cover all 10 COTTRI CDC FE boards 
with one MB 

➤ Perform event classifications based on 
the hit information 

➤ Send final CDC trigger info to the 
central trigger system (FC7) via MGT 
link

9
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by the CDC active section 
for each CTH module

CDC-trigger decision 
by the CTH module
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DECISION TREE BASED HIT CLASSIFICATION (1)
➤ Separate signal/background-like hits by using Gradient Boosted Decision Tree (GBDT) 

➤ BG hits mostly induced by protons & low momentum e- (from γ/n) 

➤ Larger dE/dx, uniform layer distributions, less neighbouring hits 

➤ Training of GBDT model can be done offline by using MC/real data 

➤ The tables with weights generated and to be implemented inside the FPGA

10
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Fig. 7. Time distribution of the background hits. The drift time is not
considered here. The horizontal axis shows time from a proton bunch. The
CTH trigger window is set to [700 ns, 1200 ns], and the integration time is set
to 400 ns from the CTH-trigger timing. Detection of the CDC hits is delayed
due to the drift time, and the end of the integration time can be extended to
1600 ns from the proton bunch.

four-fold coincidence requirement. The final trigger decision
is performed by taking a coincidence between these CDC and
CTH triggers.

IV. TRIGGER PERFORMANCE EVALUATION

A. Timing Considerations

For the data taking in the pulsed proton beam, it is important
to find an optimal timing window for accepting triggered
events to be read out by the DAQ system. Fig. 7 shows
the timing distribution of background particle hits in the
CDC. After the proton bunches hit the production target, the
secondary particles reach the detector with a certain delay in
time given by the beam transport system, then the number of
background hits immediately increases. This background level
gradually decreases mainly with the lifetime of the stopped
muons in the aluminum target. The bunch separation in the
COMET Phase-I experiment is 1170 ns, and therefore, the
background level increases again 1170 ns with the arrival of
the next bunch. In order to perform the physics measurement
during the time of low background, the measurement timing
window of the CTH trigger is set to [700 ns, 1200 ns] after the
proton bunch.

A charged particle passing through the CDC loses energy
by ionization. The RECBE detects signals from the deposited
charges in each CDC cell, which arrive within a certain time
interval given by the maximal drift-time of the charges to
the sense wire in the cell. Therefore, an integration time is
applied for the COTTRI system after the CTH trigger. In
this integration time, the hit classifiers collect the CDC hits
and filter wires having long-lived hits. If the integration time
is too short, the number of detected signal hits is small in
each trigger-decision time window and genuine conversion
electrons may be lost. On the other hand, if it is too long, many
signal hits could be misidentified as long-lived hits and filtered
out due to the pile-up criteria, and again, genuine conversion
electrons may be lost. The CDC cell is 16mm⇥ 16.8mm in
size, and the drift velocity is about 25µm/ns. The integration
time of 400 ns accepts almost all of the hits.
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Fig. 8. Distribution of the 2-bit compressed energy deposition data on the
wire of interest (a) and the neighboring wires (b).
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Fig. 9. Radial position distribution of the CDC hits. The layer ID of 0 means
the innermost layer of the CDC.

B. Input Features

The 2-bit data compression process for the wire energy
deposition is optimized to get better signal-event acceptance
for the conversion electrons. Fig. 8 shows the 2-bit energy
deposition histogram on the wire of interest and its two
neighbors within the same layer, after the optimization. Clearer
peaks of conversion electron are observed in the 2-bit energy
deposition distribution than in the case of background hits, for
both the wire of interest and the neighboring wires.

Fig. 9 shows the radial position distribution of CDC hits.
Since the mono-energetic conversion electron is emitted from
the aluminum target located at the center of the CDC, it
produces fewer hits in the outer layers of the CDC due to their
limited transverse momentum. In contrast, hits generated by
the background particles are distributed more homogeneously
in the entire CDC region because of their characteristics, as
mentioned in Section III. The inner and outer walls of the CDC
produce more low-energy electrons. Because of this, hits in the
innermost and the three outermost layers are ignored in the hit
classification.

C. Classification Performance

The GBDT approach in the hit classification was performed
by using the Toolkit for Multivariate Data Analysis with ROOT
(TMVA), which provides many machine learning techniques
for classification and regression [11]. The receiver operating
characteristic (ROC) curve of the hit classification is shown
in Fig. 10. The classification result is compared with the
uncompressed data case (energy deposition data in 10-bit). The
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Fig. 4. Simulated CDC-hit map including hits from a 105-MeV conversion
electron. Each dot represents the hit position of charged particles. The “others”
includes heavy particles, such as alpha, triton, and heavy ions. The red and
black tilted boxes inside the inner wall of the CDC are Cherenkov counters
and scintillators of the CTH, respectively. The filled boxes represent CTH
counter hits.

between the conversion electron and background particles.
Fig. 4 shows a simulated conversion-electron trajectory over-
laying with background particles recorded within an event win-
dow of 1.1µs. The main background particles are protons from
the muon-nuclear-capture processes and low-energy electrons
from the gamma-ray interactions at the CDC walls. Notable
differences between background and signal hits appear in the
hit patterns and energy deposition. The conversion electron
makes a helical trajectory that is fully contained in the CDC
due to the magnetic field, as shown in Fig. 4. The track
will produce a series of neighboring hits in the azimuthal
direction at a radius given by the transverse momentum of the
conversion electron, and no or very few hits beyond this radius.
The low-energy electrons pass along the CDC wires, and their
trajectories are helical orbits with small radii, resulting in long-
lived hits on the same wire. The protons mostly have high
momenta and pass through the CDC from inside to outside
with a larger energy loss than the conversion electrons.

B. Classification Algorithm

In the hit classification stage, GBDTs are used to evaluate
whether the hits in the set of neighboring wires are consistent
with the expectations for a conversion electron. The signal-
like hits have larger GBDT-output values and are selected for
the event classification. Fig. 5 shows the CDC-hit maps before
(Fig. 5a) and after (Fig. 5b) applying the GBDTs. Red and blue
dots represent signal and background hits based on simulation
information. The dot size of Fig. 5b reflects the GBDT-output
value. While some background hits with large GBDT-output
still remain after applying GBDT, it is clear that GBDT can
classify the signal hits out of background hits. Therefore,
the deposited energy on the wire of interest and its radial
position are selected as the GBDT-input features. In order to
eliminate hits of the low-energy electrons, hit classifiers begin
with filtering the wires having long-lived hits. The energy
deposition of neighboring wires in the same layer is also
used to suppress low-energy electron hits. For the hardware
implementation, the input feature must be quantized so that
the total size of trigger data fits to the reasonable data transfer
rate between different FPGAs with the available FPGA logic

(a)

(b)
Fig. 5. Hit maps of the CDC (a) before and (b) after applying the GBDTs.
See the text for details.

Fig. 6. Procedures for the final trigger decision. CTH ID means an identifica-
tion number for each CTH counter. “T” (true) and “F” (false) mean triggered
and non-triggered sections, respectively. Hit counters of the CTH are filled
with red for the Cherenkov counters and black for the scintillation counters.

resources, such as the number of LUTs. The energy deposition
of each wire is compressed into 2 bits, as written in Section II.
Therefore, 6-input LUTs are used for the hit classification
using energy deposition from the wire of interest and two
neighboring wires. We implement a set of 6-input LUTs inside
the FPGA, and each set of 6-bit wire hit patterns is fed into
each different LUT depending on their radial position. Thus all
the input features (deposited energy, neighboring hit pattern,
and radial position) can be considered.

Fig. 6 describes the procedure of the final trigger decision
by the event classifier, which combines CDC and CTH trigger
information. The conversion electron leaves hits only in a part
of the CDC readout area, which is correlated with the CTH-
hit positions, as shown in Fig. 4. An active part of the CDC
is defined for each CTH counter to reject background hits
efficiently while keeping the conversion-electron hits. When
the number of signal-like hits in each active part exceeds a
threshold, the CDC trigger is generated for each CTH counter.
The CTH trigger provides the counter information passing the
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DECISION TREE BASED HIT CLASSIFICATION (2)
➤ Actual implementation 

➤ Perform hit classification by configuring look-up tables (LUTs) with GBDT weighting tables 

➤ One COTTRI CDC FE covers 10 RECBEs = 480 wires, 6-bit (2-bit ADC+neighbouring ADCs) 
data/each as input, decision tree’s score as 6-bit output (larger = signal-like) 

➤ Only one or two clock cycles for the score calculation
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DECISION TREE BASED HIT CLASSIFICATION (3)
➤ Apply the geometrical cut to select the region of interest 

➤ 96% signal event trigger acceptance @13kHz (simulation) 

➤ ×3 stronger BG suppression compared to the cut based hit selection
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Fig. 11. (a) Number of signal-like hits in the active part of the CDC after
event classification. The dashed line shows the threshold of 32 which gives
the required trigger rate of 13 kHz. (b) Background trigger rate versus signal
event acceptance. The dashed line shows the required trigger rate.

2-bit data case shows worse classification performance than the
uncompressed data case, however, it still shows reasonable hit
classification performance. The threshold for the GBDT output
is scanned to optimize the event-classification quality. In this
study, this optimization was done by changing the signal-hit
retention efficiency from 25% to 95% at a 5% interval. As a
result, it is found that the threshold for the signal-hit retention
efficiency of 75% gives the best performance in the event
classification.

Fig. 11a shows the distribution of the number of signal-
like hits in both signal and background events after the hit
classification. Since the signal hits are successfully selected in
the hit classification, the signal events contain more signal-like
hits than the background events. From this result, the signal-
and background-event acceptance were calculated by applying
a threshold for the number of signal-like hits. The background-
trigger rate was estimated by the expected background trigger
rate of 91 kHz, multiplied by the background-event rejection
efficiency. Fig. 11b shows the relation between the trigger rate
and signal-event acceptance. According to this, the COTTRI
system is expected to provide a signal-event acceptance of
96% while keeping the required trigger rate of 13 kHz, which
enables the data taking with almost 100% DAQ efficiency.

Here (see also Fig. 11b), this result is also compared with a
simpler case, which only applies energy threshold cut to reject
higher-energy depositing background hits. This method gives
a signal-event acceptance of 83% for the required trigger rate.
It is evident that the GBDT-based classification achieves better

160 m
m

235 mm

Fig. 12. Picture of the COTTRI FE.

performance than the simple energy-threshold cut.

V. TRIGGER HARDWARE

We have designed and produced a new COTTRI FE board
and developed the firmware for both the COTTRI FE and MB.
Its operation test was performed to measure the trigger latency
and confirm the feasibility of its logic.

A. Hardware Development
The COTTRI FE has been designed and produced, and the

functions related to the online trigger algorithm have been
implemented on both the COTTRI FE and MB. Fig. 12 shows
the COTTRI FE. The floor design is similar to the COTTRI
MB one which was already developed and tested [7] and
contains:

• Ten DisplayPorts (DPs) for trigger-related communica-
tion,

• An FPGA (Kintex7, xc7k355tffg901 [8]) for data pro-
cessing,

• A clock jitter cleaner (Si5326 [9]) for generating a clock
signal for multi-gigabit transceivers on the FPGA,

• An SFP+ port for communication with DAQ system, and
• A DP connector for communication with the COTTRI

MB.
The main roles of the COTTRI FE and MB are the hit clas-

sification and the generation of the CDC trigger, respectively.
The COTTRI FEs receive the 2-bit data from the RECBEs
corresponding to CDC hit wires and filter out long-lived hit
wires in a pre-processing step for the hit classification within
the integration time window. GBDT-optimized LUTs for the
hit classification are implemented in the FPGA of the COTTRI
FE. For a 6-input LUT, two built-in reconfigurable 5-input
LUTs (CFGLUT5s [10]) are implemented on the COTTRI FEs
to enable the dynamic adjustment of trigger setup during a run.
These LUTs convert the input features to the GBDT outputs
within one clock cycle, and the signal-like hits are selected by
using their high LUT outputs as indices.

The LUT configuration depends on the CDC wire group for
each COTTRI FE. As described in Section IV-B, the COTTRI
system does not require to cover the full readout area of
the CDC. Each COTTRI FE covers eight or nine RECBEs.
Fig. 13 illustrates the CDC-wire configurations grouped by the
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Fig. 11. (a) Number of signal-like hits in the active part of the CDC after
event classification. The dashed line shows the threshold of 32 which gives
the required trigger rate of 13 kHz. (b) Background trigger rate versus signal
event acceptance. The dashed line shows the required trigger rate.

2-bit data case shows worse classification performance than the
uncompressed data case, however, it still shows reasonable hit
classification performance. The threshold for the GBDT output
is scanned to optimize the event-classification quality. In this
study, this optimization was done by changing the signal-hit
retention efficiency from 25% to 95% at a 5% interval. As a
result, it is found that the threshold for the signal-hit retention
efficiency of 75% gives the best performance in the event
classification.

Fig. 11a shows the distribution of the number of signal-
like hits in both signal and background events after the hit
classification. Since the signal hits are successfully selected in
the hit classification, the signal events contain more signal-like
hits than the background events. From this result, the signal-
and background-event acceptance were calculated by applying
a threshold for the number of signal-like hits. The background-
trigger rate was estimated by the expected background trigger
rate of 91 kHz, multiplied by the background-event rejection
efficiency. Fig. 11b shows the relation between the trigger rate
and signal-event acceptance. According to this, the COTTRI
system is expected to provide a signal-event acceptance of
96% while keeping the required trigger rate of 13 kHz, which
enables the data taking with almost 100% DAQ efficiency.

Here (see also Fig. 11b), this result is also compared with a
simpler case, which only applies energy threshold cut to reject
higher-energy depositing background hits. This method gives
a signal-event acceptance of 83% for the required trigger rate.
It is evident that the GBDT-based classification achieves better
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Fig. 12. Picture of the COTTRI FE.

performance than the simple energy-threshold cut.

V. TRIGGER HARDWARE

We have designed and produced a new COTTRI FE board
and developed the firmware for both the COTTRI FE and MB.
Its operation test was performed to measure the trigger latency
and confirm the feasibility of its logic.

A. Hardware Development
The COTTRI FE has been designed and produced, and the

functions related to the online trigger algorithm have been
implemented on both the COTTRI FE and MB. Fig. 12 shows
the COTTRI FE. The floor design is similar to the COTTRI
MB one which was already developed and tested [7] and
contains:

• Ten DisplayPorts (DPs) for trigger-related communica-
tion,

• An FPGA (Kintex7, xc7k355tffg901 [8]) for data pro-
cessing,

• A clock jitter cleaner (Si5326 [9]) for generating a clock
signal for multi-gigabit transceivers on the FPGA,

• An SFP+ port for communication with DAQ system, and
• A DP connector for communication with the COTTRI

MB.
The main roles of the COTTRI FE and MB are the hit clas-

sification and the generation of the CDC trigger, respectively.
The COTTRI FEs receive the 2-bit data from the RECBEs
corresponding to CDC hit wires and filter out long-lived hit
wires in a pre-processing step for the hit classification within
the integration time window. GBDT-optimized LUTs for the
hit classification are implemented in the FPGA of the COTTRI
FE. For a 6-input LUT, two built-in reconfigurable 5-input
LUTs (CFGLUT5s [10]) are implemented on the COTTRI FEs
to enable the dynamic adjustment of trigger setup during a run.
These LUTs convert the input features to the GBDT outputs
within one clock cycle, and the signal-like hits are selected by
using their high LUT outputs as indices.

The LUT configuration depends on the CDC wire group for
each COTTRI FE. As described in Section IV-B, the COTTRI
system does not require to cover the full readout area of
the CDC. Each COTTRI FE covers eight or nine RECBEs.
Fig. 13 illustrates the CDC-wire configurations grouped by the
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TRIGGER FULL CHAIN TEST
➤ Electronics full-chain test with a partial CDC  

➤ Incl. LUTs inside the FPGAs in COTTRI 
CTH FE for GBDTs 

➤ The cosmic-ray test was performed in 2019 

➤ Measured latency 3.2 µsec obtained
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Processing time: 3.1 µs - 3.2 µs 95

Latency [µs] Description

RECBE - COTTRI System - FC7 - RECBE 1.9 - 2.0 100 ns fluctuation by the data 
transfer rate of 10 MHz

Drift time distribution 0.4 Data evaluation every 100 ns
Trigger receiving time in RECBE 0.8 32bit trig. data with 40 MHz

COTTRI 
FE

RECBE
FC
T
FC
T-
RE
CB
E 

In
te
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e

COTTRI 
MB

FC7

test pulse

Function 
generator

~1.9µs
Test pulse 

Trigger signal

Trigger number

Fin. score integration

The total processing time satisfies with the requirement.
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SUMMARY
➤ GBDT based online hit classification was proposed to extremely suppress the non-

trajectory fake trigger 

➤ Achieved a 96% signal efficiency with less than 13 kHz fake trigger rate from the 
original rate of ~90 kHz based on the simulation study 

➤ A COTTRI system has been designed and full chain test was performed in success 
with the GBDT’s LUTs already implemented 

➤ Obtained 3.2 µsec latency much shorter than the requirement of 7.5 µsec

14

See details in Y. Nakazawa’s PhD thesis

https://doi.org/10.18910/81883
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SUMMARY
➤ GBDT based online hit classification was proposed to extremely suppress the non-

trajectory fake trigger 

➤ Achieved a 96% signal efficiency with less than 13 kHz fake trigger rate from the 
original rate of ~90 kHz based on the simulation study 

➤ A COTTRI system has been designed and full chain test was performed in success 
with the GBDT’s LUTs already implemented 

➤ Obtained 3.2 µsec latency much shorter than the requirement of 7.5 µsec 

➤ We want more! 

➤ Further BG suppression → Wider timing window (=larger signal acceptance), 
New bi-product trigger, Sustainable data management, etc. 
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See details in Y. Nakazawa’s PhD thesis

https://doi.org/10.18910/81883
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NEURAL NETWORK BASED EVENT CLASSIFICATION (1)
➤ NNs can be alternative (or additive) to the cut-based event classification after the 

GBDT hit classifier 

➤ Pros 

➤ Excellent pattern recognition capability especially with the deep neural networks 

➤ Various softwares available for the quick model evaluations 

➤ Much faster than the arithmetic calculations in general 

➤ Cons 

➤ Difficult model conversion from networks to the real firmware 

➤ Heavy resource usage (DSP/LUT/BRAM) for the calculation 

➤ Calibrations(?) uncertainty estimation(?)

16



Y. Fujii, NuFact2022, Salt-Lake city, Utah

NEURAL NETWORK BASED EVENT CLASSIFICATION (1)
➤ NNs can be alternative (or additive) to the cut-based event classification after the 

GBDT hit classifier 

➤ Pros 

➤ Excellent pattern recognition capability especially with the deep neural networks 

➤ Various softwares available for the quick model evaluations 
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→ New tools available (hls4ml)

→ Sparse networks with 

    model quantisations
→ Not to be covered today
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MODEL CONSTRUCTION (1)
➤ General workflow of the NN development for FPGA using hls4ml 

18

https://fastmachinelearning.org/hls4ml/concepts.html

https://fastmachinelearning.org/hls4ml/concepts.html
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MODEL CONSTRUCTION (2)
➤ What do we (users) do (in general)? 

1. Data preparations and formatting 

2. Model selections 

3. Parameters’ tuning (# of layers, sparseness, resolutions etc.) 

➡ Grid scanning,  built-in/customised tuners, etc. 

4. Performance evaluation 

➡ Accuracy, latency, stability etc 

5. Resource check 

➡ Select your FPGA chip and see whether resource is available

19
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MODEL CONSTRUCTION (3)
➤ As a first test, we made sets of toy MC for signal/background events for NN training/test 

➤ 5% noise events randomly distributed with/without the arch (signal-like) pattern 

➤ Quantised and sparse Multi layer perceptron (QMLP) was tentatively chosen 

➤ Few hyper-parameters tuned roughly by utilising a Keras built-in Bayesian optimiser

20
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     QKeras Signal tagger, AUC=99.7% 
     QKeras BG tagger, AUC=99.7% 
     FPGA Signal tagger, AUC=96.5% 
     FPGA BG tagger, AUC=96.7%
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FIRMWARE DEVELOPMENT (1)
➤ Structure of the “test” firmware

21

Hit-by-hit 
data injection 
via SiTCP* 

Compressed 
pattern data 
via MGT link 

COTTRI CTH FE COTTRI MB

MGT 
I/F

MGT 
I/F

Hit Score Summing 
& Data formatting

Debug core 
(ILA)

QMLP module MGT 
I/F

Final CDC 
trigger info 
to FC7

Debug core 
(ILA)
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FIRMWARE DEVELOPMENT (1)
➤ Structure of the “test” firmware
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Hit-by-hit 
data injection 
via SiTCP* 

Compressed 
pattern data 
via MGT link 

COTTRI CTH FE COTTRI MB

MGT 
I/F

MGT 
I/F

Hit Score Summing 
& Data formatting

Debug core 
(ILA)

QMLP module MGT 
I/F

Final CDC 
trigger info 
to FC7

Debug core 
(ILA)

Resource usage after 
compiling the firmware
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FIRMWARE DEVELOPMENT (2)
➤ Firmware simulation with Vivado

23

Input data

125ns

Signal score > BG score

* Output data format 

6bit integers + 10bit point decimal
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HARDWARE TEST (1)
➤ Actual NN firmware module (QMLP) was implemented into the COTTRI MB 

➤ Write MC signal/BG data pattern into FE via UDP protocol & send them to MB via 2.4 Gbps MGT link 

➤ NN classification performed inside the FPGA & outputs were checked by using Vivado ILA debug core
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HARDWARE TEST (2)
➤ NN firmware implementation results (just obtained in the last week!)

25

Data in COTTRI MB & 

Outputs of QMLP module

Input data

Output of Signal Classifier ~0.95

Output of BG Classifier ~0.08

Received data from COTTRI FE

Both output values are consistent with 
both simulation and offline outputs
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RESULTS
➤ Comparisons for10 signal/BG events 

➤ Online classifier shows similar but 
worse performance compared to 
the offline MLP models 

➤ More events to be checked 

➤ This is a very preliminary test in 
order to establish the workflow of 
NN implemented FPGA 

➤ More resources available 

➤ Further optimisations available
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SUMMARY AND PROSPECTS
➤ A fast and highly efficient trigger is essential in the COMET Phase-I experiment 

➤ Better trigger, more physics 

➤ Online machine learning algorithms inside FPGAs are being developed 

➤ GBDT based hit classification was developed and the simulation study showed 96% 
signal efficiency + 13 kHz trigger rate with a very short net-latency, 3.2 µsec 

➤ Additional NN based event classification was proposed and the development has begun 

➤ Potential increasing of the signal sensitivity by factor of two 

➤ Sparse QMLP model can be realised with very low FPGA resources 

➤ We established the workflow and the NN-based firmware was designed, generated 
and tested with a real FPGA board

27

Thank you!



BACK UP
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➤ QMLP model structure 

➤ Very sparse model was 
chosen for the first trial

29

Out[36]:

nntrial2 http://localhost:8888/nbconvert/html/COMET_ML_Pro...

29 of 51 7/28/22, 16:17

Comparing with base Keras model

Similar to how we compared the base Keras model and the QKeras model previously, we

now compare the QKeras model and the hls4ml model.

Writing HLS project
Done

Starting Predictions
313/313 [==============================] - 0s 921us/step

...Finished Predictions

Keras  Accuracy: 0.9934
hls4ml Accuracy: 0.9085

hls_model.compile()
print("\n\nStarting Predictions")
y_keras = tuned_model.predict(X_test)
y_hls = hls_model.predict(X_test)
print("\n\n...Finished Predictions")

from sklearn.metrics import accuracy_score
print("Keras  Accuracy: {}".format(accuracy_score(np.argmax(y_test, axis=
print("hls4ml Accuracy: {}".format(accuracy_score(np.argmax(y_test, axis=

hls_model.build(csim=False)
#TODO: Get this to bloody work
print("\n\n\n\n Getting the report...")
hls4ml.report.read_vivado_report('my-hls-test')

nntrial2 http://localhost:8888/nbconvert/html/COMET_ML_Pro...
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