T2K Near Detector Upgrade: Super Fine-Grained Detector

Christopher Mauger for the T2K collaboration
University of Pennsylvania
5 August 2022

T2K Experiment and Near Detector

- Near Detector detailed studies of neutrino and anti-neutrino beams in high flux environment
- Excellent forward-particle measurements
- Far detector isotropic measurement of event signatures 2

Overview of the Upgrade Detector (See talk by A. Eguchi)

- Super Fine-Grained Detector (SFGD)
 - Primary target solid scintillator detector composed of 1-cm cubes
 - Groups on 3 continents contributing to this detector
- High-Angle Time-projection chambers (HA-TPC)
- Time of flight detectors (ToF)

Super Fine-Grained Detector: SFGD

1x1x1 cm³ cubes
Polystyrene scintillator
1.5% paraterphenyl
0.01% POPOP
Chemical etched reflector
WLS fiber Kuraray Y11
2-clad (Ø=1mm)

- 3D-array of 1-cm scintillator cubes (184x192x56)
- Fibers run the length (or width or height) of the detector -3-fibers in each cube
- Low-occupancy experiment 3D view of events (4π like acceptance)
- Prototype detectors neutron measurements described in C. Riccio's talk

Cube Production/Assembly Completed!

1 Layer = 184 x 192 cubes (baseline design)

All cubes have been produced by Uniplast and layers have been assembly at INR

- Cube production, finishing, QC completed about 2 million cubes
- Initial assembly completed with fishing line (completed on schedule during the pandemic)
- Cubes aligned in strings
- Assembled into planes
- Planes stacked and aligned for the full detector
- Final optical fiber insertion done at J-PARC

Cubes Delivered to J-PARC

56 (Y) **+1** spare layers x **192** cubes (X) x **182** cubes (Z) [1,991,808 cubes in total]

- All cubes have been delivered to J-PARC arrived safe and sound!
- Massive undertaking in normal times
- Herculean effort in current times

Many items at J-PARC awaiting assembly

- Cubes, assembly stand, fibers, chiller all await assembly
- Major mechanical items mostly in hand

Light-readout scheme

 Wave-length shifting fiber aligned with the Multi-Pixel Photon Counters (MPPCs) via hardware design

and WLS fibers

- MPPC is surface mounted onto the PCB screwed into the box plate
- Fibers glued to optical connectors total of 56,382 fibers

LED Calibration

Concept of light propagation for the system

This concept can distribute uniform light with thin space using a small # of LEDs

- The light guide plate (LGP) has notches which scatter light
- Notches on the LGP are placed at the same pitch as the fiber

- LED Calibration employs side of fiber not read out to inject light into the fiber
- System has been prototyped
- LGPs produced
- Other elements will be acquired soon
- QC and assembly in autumn of this year

Pulse height and width can be controlled by FPGA

One LED driver covers 12 LGP modules
There are 8 LED drivers to cover all modules

Electronics I

Single crate

- 16 crates 8 on each side of the detector
- Single crate 14 Front-end boards, Optical Concentrator Board, Backplane, Power distribution
- Thermal model built to ensure < 60 degrees C

Electronics II

SFGD Electronics Architecture

Power Distribution – most

happens on FEBs, currently

testing DC/DC converters in

local DC/DC conversion

magnetic fields

Optical Concentrator Board (1 board per crate) – initial data aggregation, switchyard to outside world

Master Clock Board – external to magnet, hardware connections to the beam triggers

Front-End Board (14 boards per crate) – analog processing, ADC, bias voltage to the MPPCs 8 CITIROC chips per board – 256 channels

Electronics III USA

Europe

Japan

- Extensive FEB testing including charge linearity and timing studies
- Crate-level testing reading out data from FEBs through the backplane and OCB (combines equipment designed by European and US groups)
- FEB QC planning is ongoing
- Worldwide chip shortage has impacted the schedule electronics team has made design adjustments to ensure the earliest possible delivery
- Electronics on the critical path expect complete and tested systems in Japan in early 2023

Prototypes

Tests in charged particle and neutron beams

SFGD Prototype (8x24x48):

- Charged particle beam at CERN
- Neutron beam at LANL

US-Japan Prototype (8x8x32):

Neutron beam at LANL

Neutron Cross Section vs Neutron Energy

https://arxiv.org/abs/2207.02685 Also, see C. Riccio's talk at this meeting

A. Blondel et al 2020 JINST 15 P12003

Performance and Capabilities of Upgraded Detector

- Greatly improved performance for transverse particles
- Excellent neutron detection *and* neutron measurement of kinetic energy via time of flight *within* the SFGD
- Momentum by range -3% for stopping muons

Simulated Event in Upgraded ND

Schedule

- Original plan
 - Assemble and commission most elements at CERN before shipping to J-PARC
 - Commissioning completed at J-PARC by March 2022
- COVID-19 impacts on design, prototyping efforts
- Current Plan
 - Assemble cubes in the box, insert fibers into the cubes in autumn of 2022 on the surface at J-PARC
 - Initial testing of electronics on the surface
 - Lower everything into the pit
 - Final assembly and commissioning complete in the spring of 2023
- First beam with SFGD in late spring of 2023
- We must remain flexible and adjust to supply-chain and other world events

Summary

- T2K continues to be an exciting experiment
- Upgrade detector employs a novel approach to achieve 3D reconstruction
- New results with well-measured transverse momentum will provide greater constraints on the neutrino interaction models
- The prospect of detailed understanding of outgoing neutron kinematics for the first time in an oscillation experiment is very exciting
- Despite the pandemic and other challenges, efforts are proceeding well anticipate first beam in calendar 2023

T2K Collaboration

~500 members, 76 institutes, 13 countries (+CERN)

