Total neutron cross-section measurement on CH with a novel **3D-projection scintillator detector**

Ciro Riccio on behalf 3D Projection Scintillator R&D group NuFact 2022 August, 4th 2022

Motivations

- of the upgraded near detector of T2K (see Aoi Eguchi's talk)
- Neutron detection and kinematic reconstruction among the different improvements it promises
 - Neutron kinematics is one of missing piece for (anti)neutrino energy reconstruction but not accessible to current LBL detectors
 - High precision needed in future LBL experiments and measuring neutron kinematics helps in this direction
- Neutron detection and kinematic reconstruction capabilities were studied exposing a prototype to a neutron beam at LANL

A novel 3D-projection scintillator detector, called SuperFGD, will be the tracker

LANL facility

Weapons Neutron Research Facility at LANL provides neutron beam ranged from 0-800 MeV

SuperFGD Prototype

Super-FGD prototype exposed to neutron beam

Already used for the charged particle beam test at CERN and published <u>here</u>

- Three different types of MPPC used
- Gain calibration
 - LED runs taken at LANL in 2019
 - Gain extracted for each channel and temperature variation included
- Light yield calibration
 - Dedicated cosmic samples selected
 - PE per MeV obtained for each channel
- Light attenuation measured at CERN

Neutron beam

A gamma flash comes before the neutron

The neutron energy is measured using the timeof-flight.

*Simplified drawing

Ciro Riccio, Stony Brook University | NuFact 2022

Total n-CH cross section

- Total cross section on CH has been extracted using data taken in 2019 and has been submitted on <u>ArXiv</u> recently. The extraction strategy is the following:
 - Neutron flux decreases as a function of depth in the detector due to neutron interactions with CH
 - The total neutron-CH cross section can be extracted from the attenuation of the beam $N_0 e^{-T\sigma z}$
 - The attenuation can be measured by choosing a particular event topology and measuring the change in the rate of this particular process as a function of depth in the detector
 - We assume that the fraction of the total cross section that results in the chosen topology does not change as a function of depth
 - We have chosen events with single reconstructed tracks as topology

Event reconstruction

- Neutron interaction time window: -326 ns < Hit time < 340 ns
- Require #hits > 3 each with PE > 20
- Time clustering: if $t_{hit}(i+1) t_{hit}(i) < 17.5$ ns then hits belong to same cluster Voxelization: three 2D-view matching of time-clustered hits
- DBSCAN is used to group voxels into clusters
 - Any voxels within 1.8 cm ($\sqrt{3}$) cm of each other are grouped into the same cluster
 - 1 voxel by itself is considered a cluster

Single track selection

Cut name	
#clusters	Select event
#voxel	3 - 8 voxels i
PCA-derived	Cut that reje measure the de
Max cluster width	Width of the proj perpen
3D line-voxel max distance	Max distance
Vertex in FV	Vertex (first vo

Ciro Riccio, Stony Brook University | NuFact 2022

Cut description and value

ts with only one time and spatial cluster

in single cluster (reduce dependence on geometric acceptance)

ect blob-like event using a variable that evelopment of the cluster along the best-f

jection of the voxel position on the directind indicular to the best fit line < 1.4 cm

e between 3D best fit line and voxels in a cluster must be < 1.2 cm

oxel in Z) must be in 1.5x1.5 cm² FV (build around the beam center)

Fi+	
ion	
ion	
ion	

PCA-derived cut

the center of the cluster is defined as: $M_{ii} = \sum_{i}^{N}$

- A PCA of this matrix is performed
- The following quantity can be extracted $L = (\lambda_1 - \lambda_2)/\lambda_1$ where λ_i are the eigenvector of the matrix M_{ii}
- If L is lower than 0.7 the event is rejected
- Reject blob-like events

Max cluster width

- To improve track-like events selection we compute the following quantity: $d_i = \overrightarrow{e}_2 \cdot (\overrightarrow{v}_i - \overrightarrow{c})$ which is the projected distance between one voxel and the center of mass of the cluster on the second principal vector
- We calculate the distance between the 2 voxels furthest away from each other $d = d_{max} - d_{min}$ and this must be lower than 1.4 cm

3D line-voxel max distance

- The principal vector of a cluster represents the direction of 3D line with origin in first voxel in z of the cluster (red line in figure)
- Compute the distance between the voxel and the best fit line
- If the maximum distance is larger than 1.2 cm the event is rejected
- Helps to reject tracks with kinks

Neutron cross-section

- Fill an histogram for every energy (from ToF between production point and depth (z-layer)
- Energy binning optimized taking into account the time resolution (1.37 ns)
- Energy restricted to be between 98 and 688 MeV. Below 98 MeV tracks not long enough and neutron elastic scattering dominates, above 688 MeV gammas dominates and less statistics
- Fit with the exponential $N_0 e^{-T\sigma z}$
- Extract the cross section for every bin from the exponential fit

vertex) bin, which is the distribution of the number of events as function of the

Systematic uncertainties

- Detection systematic (dominant): cube, MPPC and passive material nonuniformity
- Invisible scattering: missed primary interaction vertex
- Geometric acceptance: location dependent acceptance due to limited detector size: multi-tracks event can look like a single track close to the edge
- Light yield: variation for each channel measured using cosmic rays
- Time resolution: measured using the gamma flash and CERN data
- Collimator interactions: neutrons interacting with the collimator before entering the detector

13

Error propagation

- The systematics that change the number of events in each z-layer are propagated in the following way:
 - Fit with the exponential $N_0 e^{-T\sigma z}$ the distribution obtained after every gaussian variation of the number of events in every z-layer and energy bin
 - Fill an histogram with every value of the cross section
 - The systematic uncertainty is the RMS of this distribution
- Time resolution and the uncertainty due to collimator interactions changes the energy distribution (shape-like systematics) all the others change the normalization (#events in each z-layer)
- The total systematic uncertainty is the sum in quadrature of the single one
- Statistical uncertainty given by square root of number of events in every z-layer

Final result

Total of 20h of data analyzed. The total rate is about 1e6 events (total interactions are ~1e8 and efficiency is ~1e-2)

Neutron Cross Section vs Neutron Energy

Ciro Riccio, Stony Brook University | NuFact 2022

The energy-integrated (98-688 MeV) cross section is 0.36 \pm 0.05 barn with a $\chi 2/d.o.f.$ of 22.03/38

Future studies

- In 2020, the SuperFGD and a smaller prototype called US-Japan prototype, were exposed to the neutron beam for 2 weeks (location 15L - 90 m from the production point)
- Different prototypes configurations, collimator size and beam configurations allowing for various studies
- Studies of neutron secondary interactions, MC studies and comparison with data, elastic vs inelastic scattering, investigate possibility to constrain invisibile scattering

US-Japan prototype

Conclusions

- SuperFGD
- It demonstrates that SuperFGD is capable of detecting neutrons!
- Lessons learned are the starting point for neutron reconstruction in SuperFGD
- Additional data have been collected with SuperFGD and US-Japan prototypes in 2020 and analysis of them will continue
- A lot of interesting physics topics will be studied in the near future

Ciro Riccio, Stony Brook University | NuFact 2022

 The total n-CH cross-section measurement has been submitted on ArXiv recently and is the first physics results of the technology developed for

Thank you!

3D Projection Scintillator R&D group CERN

- Chung-Ang University, South Korea ETH Zurich, Switzerland
- University of Geneva, Switzerland
- High Energy Accelerator Research Organization (KEK), Japan IFAE (Spain)
 - Imperial College, UK
 - Institute for Nuclear Research (INR), Russia
 - University of Kyoto, Japan
 - Louisiana State University
 - University of Pennsylvania
 - University of Pittsburgh
 - University of Rochester
 - South Dakota School of Mines and Technology
 - Stony Brook University
 - University of Tokyo, Japan

Ciro Riccio, Stony Brook University | NuFact 2022

Imperial College London

Backup

Beam structure

MPPC type

Description	Type I	Type II
Manufacturer ref.	S13360-1325CS	S13081-050CS
No. in Prototype	1152	384
Pixel pitch [µm]	25	50
Number of pixels	2668	667
Active area [mm ²]	1.3×1.3	1.3×1.3
Operating voltage [V]	56–58	53–55
Photon detection eff. [%]	25	35
Dark count rate [kHz]	70	90
Gain	7×10^{5}	1.5×10^{6}
Crosstalk probability [%]	1	1

Detection Systematics

Major causes:

- •Cube misalignment: In MC, systematically shifting every 5 layers by 1 mm makes the events rate at z changes up to 10%.
- MPPC anisotropy: Relatively small as the YZ and XZ view results are very similar.
- •Cut vs no-cut ratio gives the systematics

