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Motivations
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• Neutron detection and kinematic reconstruction among 
the different improvements it promises 


• Neutron kinematics is one of missing piece for 
(anti)neutrino energy reconstruction but not 
accessible to current LBL detectors


• High precision needed in future LBL experiments and 
measuring neutron kinematics helps in this direction
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• A novel 3D-projection scintillator detector, called SuperFGD, will be the tracker 
of the upgraded near detector of T2K (see Aoi Eguchi’s talk)

• Neutron detection and kinematic reconstruction capabilities were studied 
exposing a prototype to a neutron beam at LANL

Simplified drawing of a 
(anti)neutrino interaction



LANL facility
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Data taken 
at 90 m in 

2019

Weapons Neutron Research 
Facility at LANL provides 
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SuperFGD Prototype
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*Recently published here: https://arxiv.org/abs/2008.08861

Super-FGD prototype exposed 
to neutron beam

24 cm

8 cm

48 cm

Already used for the charged particle 
beam test at CERN and published here

• Three different types of MPPC used

• Gain calibration

• LED runs taken at LANL in 2019

• Gain extracted for each channel and 

temperature variation included

• Light yield calibration

• Dedicated cosmic samples selected

• PE per MeV obtained for each 

channel

• Light attenuation measured at CERN
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https://arxiv.org/abs/2008.08861
https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12003
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The neutron energy is 
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of-flight.
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A gamma flash comes 
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Total n-CH cross section
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• Total cross section on CH has been extracted using data taken in 2019 and has 
been submitted on ArXiv recently. The extraction strategy is the following: 

• Neutron flux decreases as a function of depth in the detector due to neutron 

interactions with CH

• The total neutron-CH cross section can be extracted from the attenuation of the 

beam 

• The attenuation can be measured by choosing a particular event topology and 

measuring the change in the rate of this particular process as a function of 
depth in the detector


• We assume that the fraction of the total cross section that results in the chosen 
topology does not change as a function of depth


• We have chosen events with single reconstructed tracks as topology

N0e−Tσz
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https://arxiv.org/pdf/2207.02685.pdf
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• Neutron interaction time window: -326 ns < Hit time < 340 ns


• Require #hits > 3 each with PE > 20 


• Time clustering: if thit (i+1) - thit (i) < 17.5 ns then hits belong to same cluster


• Voxelization: three 2D-view matching of time-clustered hits

Different colors mean 
different clusters after 

DBSCAN

Event reconstruction

• DBSCAN is used to group voxels into 
clusters


• Any voxels within 1.8 cm (√3) cm of 
each other are grouped into the same 
cluster 


• 1 voxel by itself is considered a cluster 

Beam
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Single track selection
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Cut name Cut description and value
#clusters Select events with only one time and spatial cluster

#voxel 3 - 8 voxels in single cluster (reduce dependence on 
geometric acceptance)

PCA-derived  Cut that reject blob-like event using a variable that 
measure the development of the cluster along the best-fit 

lineMax cluster width Width of the projection of the voxel position on the direction 
perpendicular to the best fit line < 1.4 cm

3D line-voxel max 
distance

Max distance between 3D best fit line and voxels in a 
cluster must be < 1.2 cm

Vertex in FV Vertex (first voxel in Z) must be in 1.5x1.5 cm2 FV (build 
around the beam center)
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PCA-derived cut
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• For each cluster a matrix that encodes the distance between each voxel and 

the center of the cluster is defined as: 


• A PCA of this matrix is performed 

Mij = ∑
( ⃗v − ⃗c )i( ⃗v − ⃗c )j

N

• The following quantity can be extracted 
 where  are the 

eigenvector of the matrix 


• If  is lower than 0.7 the event is rejected


• Reject blob-like events

L = (λ1 − λ2)/λ1 λi
Mij
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Max cluster width
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• To improve track-like events selection we compute the following quantity:
 which is the projected distance between one voxel and 

the center of mass of the cluster on the second principal vector 


• We calculate the distance between the 2 voxels furthest away from each other 
 and this must be lower than 1.4 cm

di = ⃗e 2 ⋅ ( ⃗v i − ⃗c )

d = dmax − dmin

Cluster width = 0 Cluster width ~ 3
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3D line-voxel max distance
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• The principal vector of a cluster 
represents the direction of 3D line 
with origin in first voxel in z of the 
cluster (red line in figure)


• Compute the distance between the 
voxel and the best fit line


• If the maximum distance is larger 
than 1.2 cm the event is rejected


• Helps to reject tracks with kinks 0 5 10 15 20 25 30 35 40 45
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Neutron cross-section
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• Fill an histogram for every energy (from ToF between production point and 
vertex) bin, which is the distribution of the number of events as function of the 
depth (z-layer) 


• Energy binning optimized taking into account the time resolution (1.37 ns) 
• Energy restricted to be between 98 and 688 

MeV. Below 98 MeV tracks not long enough 
and neutron elastic scattering dominates, 
above 688 MeV gammas dominates and 
less statistics

• Fit with the exponential 


• Extract the cross section for every bin 
from the exponential fit

N0e−Tσz
Fit range 1-40 cm
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Systematic uncertainties
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• Detection systematic (dominant): cube, MPPC and passive material non-
uniformity


• Invisible scattering: missed primary interaction vertex


• Geometric acceptance: location dependent acceptance due to limited 
detector size: multi-tracks event can look like a single track close to the edge 


• Light yield: variation for each channel measured using cosmic rays


• Time resolution: measured using the gamma flash and CERN data


• Collimator interactions: neutrons interacting with the collimator before 
entering the detector
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Error propagation
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• The systematics that change the number of events in each z-layer are 
propagated in the following way:


• Fit with the exponential  the distribution obtained after every 
gaussian variation of the number of events in every z-layer and energy bin


• Fill an histogram with every value of the cross section 

• The systematic uncertainty is the RMS of this distribution


• Time resolution and the uncertainty due to collimator interactions changes the 
energy distribution (shape-like systematics) all the others change the 
normalization (#events in each z-layer) 


• The total systematic uncertainty is the sum in quadrature of the single one

• Statistical uncertainty given by square root of number of events in every z-layer

N0e−Tσz
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Final result
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Total of 20h of data analyzed. The total rate is about 1e6 events (total 
interactions are ~1e8 and efficiency is ~1e-2)

The energy-integrated (98-688 MeV) cross

section is 0.36 ± 0.05 barn with a χ2/d.o.f. of 22.03/38
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Future studies
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• In 2020, the SuperFGD and a smaller 
prototype called US-Japan prototype, 
were exposed to the neutron beam for 2 
weeks (location 15L - 90 m from the 
production point) 


• Different prototypes configurations, 
collimator size and beam configurations 
allowing for various studies


• Studies of neutron secondary interactions, 
MC studies and comparison with data, 
elastic vs inelastic scattering, investigate 
possibility to constrain invisibile scattering

SuperFGD

US-JP

Beam

US-Japan prototype

8 cm

32 cm
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Conclusions
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• The total n-CH cross-section measurement has been submitted on ArXiv 
recently and is the first physics results of the technology developed for 
SuperFGD


• It demonstrates that SuperFGD is capable of detecting neutrons! 


• Lessons learned are the starting point for neutron reconstruction in 
SuperFGD


• Additional data have been collected with SuperFGD and US-Japan 
prototypes in 2020 and analysis of them will continue 


• A lot of interesting physics topics will be studied in the near future 
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https://arxiv.org/pdf/2207.02685.pdf


Thank you! 
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Backup
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Beam structure

20

Macropulse

Micropulse

8.33 ms675 us

1.8 us

Amplitude 
ramps up as 
macropulse 

starts 

7 milion protons

~ns

Protons impinge on the 
target and produce neutrons 

and gammas.

Beginning of 
the micropulse 

is the t0

Data 
acquisition 

starts
Time

Ciro Riccio, Stony Brook University | NuFact 2022 



21

MPPC type
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Detection Systematics 
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Major causes:


•Cube misalignment: In MC, 
systematically shifting every 5 
layers by 1 mm makes the events 
rate at z changes up to 10%.


•MPPC anisotropy: Relatively small 
as the YZ and XZ view results are 
very similar.


•Cut vs no-cut ratio gives the 
systematics
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