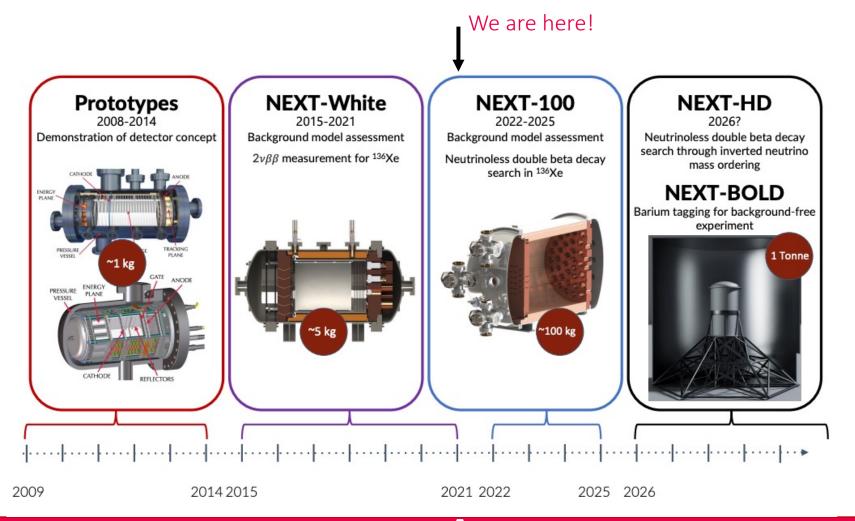


Neutrino Experiment with a Xenon TPC (NEXT)


- NEXT is a $0\nu\beta\beta$ experiment that uses a high-pressure gaseous time projection chamber
 - \rightarrow Xenon-136 $2\nu\beta\beta$ isotope we can exploit its properties as a noble element
- $0\nu\beta\beta$ W $e^ e^-$ p
- Searching for tiny signal at end point of $2\nu\beta\beta$ spectrum
 - To maximise discovery our potential, we must consider these four categories for our detector:

The NEXT Program

- Series of High Pressure Gaseous Xenon Time Projection Chambers with a rich R&D program
 - \rightarrow NEXT-100 is the latest experiment and is in the final stages of construction!

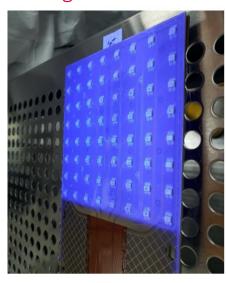
NEXT-100 is coming soon!

• Many of the TPC components of NEXT-100 have been completed and

are ready to be installed

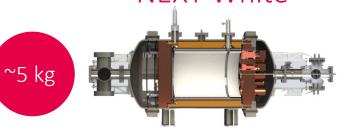
Pressure Vessel

EL Region

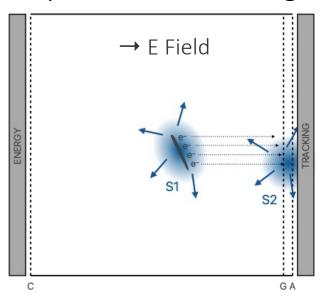

Copper Shielding

Lead Castle

Tracking Plane SiPM boards


Field Cage

Asymmetric TPC Design

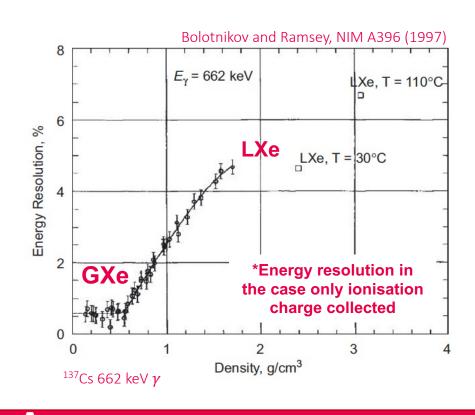

NEXT-100

- S1 (prompt) light used for triggering
- S2 (secondary) used for energy measurement and tracking

Asymmetric TPC design

- TPB used to wavelength shift the VUV light to visible
- Detectors are located at the Canfranc underground research facility

See talk from Gonzalo Diaz for more details on NEXT-White and NEXT-100!

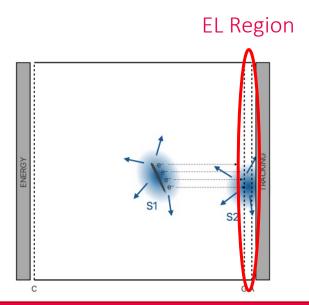

Energy resolution

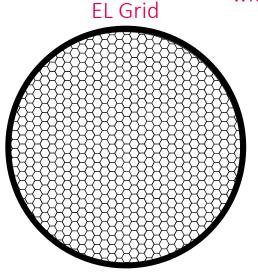
Require better than 2% energy resolution to effectively reject $2\nu\beta\beta$

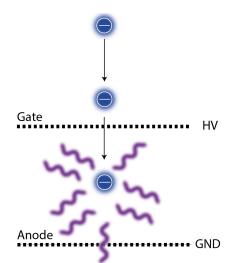
- $0\nu\beta\beta$ decay: 136 Xe \rightarrow 136 Ba²⁺ +2e⁻
 - → All energy transferred to the electrons which deposit their energy in the detector
- Gaseous phase: energy resolution near the Fano limit
 - → Recombination is negligible
 - $\mathbf{Q}_{oldsymbol{eta}oldsymbol{eta}}$ Sub-percent energy resolution at $\mathbf{Q}_{oldsymbol{eta}oldsymbol{eta}}$ possible using only ionisation charge
 - → NEXT-White has demonstrated 1% energy resolution

JINST 13 (2018) 10, P10020; JHEP 10 (2019) 230

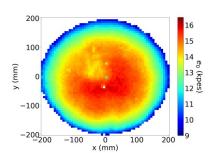
Electroluminescence (EL)

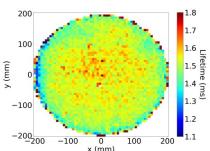

NEXT uses EL to amplify the ionisation charge



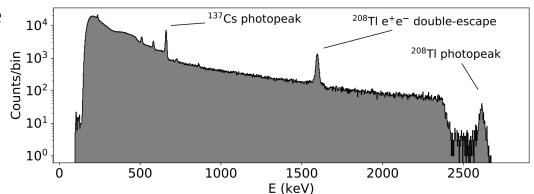

- Charges are accelerated and excite the xenon
 - → Operated so that there is no ionisation
 - → Scintillation emission (electroluminescence!) with gains from 10³ 10⁵, proportional to initial charge
 - → Near fluctuation-less gain preserving good energy resolution

Two tensioned hexagonal meshes with front mesh biased to -HV


Calibration in NEXT


- NEXT uses several radioactive sources to calibrate the detector
- Low energy: ^{83m}Kr (short half-life ~1hr)
 - → Point-like depositions (41.5 keV) uniformly distributed throughout the active volume
 - Calibration maps generated for geometrical and lifetime corrections
 - → Continuous monitoring of detector conditions

JINST 13 (2018) no.10, P10014



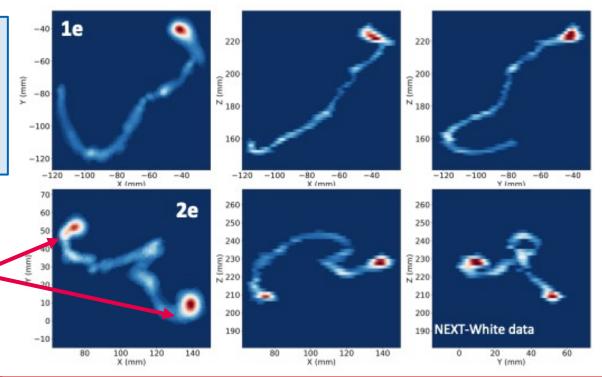
Lifetime Corrections

- High energy: ²⁰⁸Tl (2615 keV) and ¹³⁶Cs (662 keV):
 - → Energy resolution at Q value
 - → Energy scale
 - → Energy resolution vs E

JHEP 10 (2019) 230; JINST 13 (2018) no.10, P10020

Topology reconstruction

Gammas produced from natural radioactive decay chains can populate signal region (Q = 2.458 MeV)

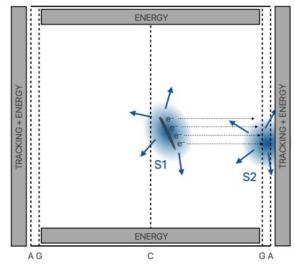

- \rightarrow 208Tl decays to 208Pb \rightarrow de-excitation γ at 2.614 MeV
- \rightarrow 214Bi decays to 214Po \rightarrow de-excitation γ at 2.447 MeV

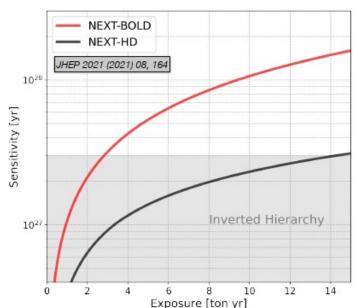
single electron events

Reconstruction of the topology allows for effective rejection of single electron events

 "blobs" at end of tracks used to identify 2e⁻ vs
1e⁻

NEXT-White Data

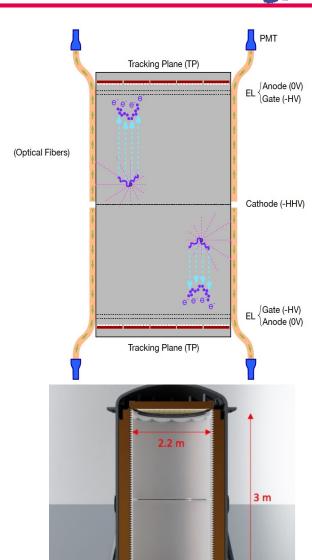

Scalability: towards the tonne scale



Tonne-scale detector required to reach target sensitivities towards $T_{1/2} \sim 10^{28}\,\mathrm{yr}$ and cross the inverted hierarchy region

- Tonne scale TPCs required with minimal background acceptance
 - → Estimated background 0.09 to 0.27 count/(tonne year ROI)
- Symmetric TPC design helps reduce drift time (→ reduce diffusion)
- NEXT-tonne will be a multi-module system with ongoing R&D for future modules including barium tagging

Symmetric TPC design



NEXT-HD: first tonne scale module

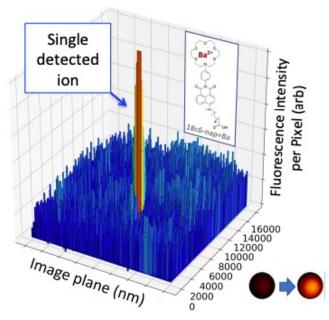
- Optical fibres around barrel of the TPC for energy measurement
 - → Detection via SiPM removing the use of PMTs which are a significant source of radioactivity
- Dense SiPM plane readout for high resolution tracking
- Potential use of additives:
 - → ⁴He to reduce diffusion
 - → ³He to reduce neutron capture on ¹³⁶Xe which will be a significant background for NEXT at this scale J. Phys. G: Nucl. Part. Phys. 47 075001

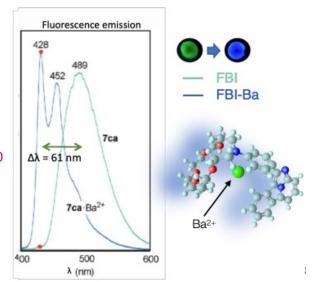
NEXT-BOLD: making barium shine

Tagging the barium ion in co-incidence with a two-electron signal in the ROI would yield a background free tonne-scale experiment

- Single molecule fluorescent imaging employed to detect the Ba²⁺ daughter
- NEXT has developed custom barium chemosensing molecules with demonstrated single ion response in dry environments
- Active R&D programme with two approaches:

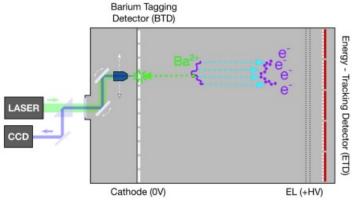
→ Turn-on




JINST 11 (2016) 12, P12011; Phys. Rev. Lett. 120 (2018) 13, 132504; Sci.Rep. 9 (2019) 1, 15097

→ Bi-colour

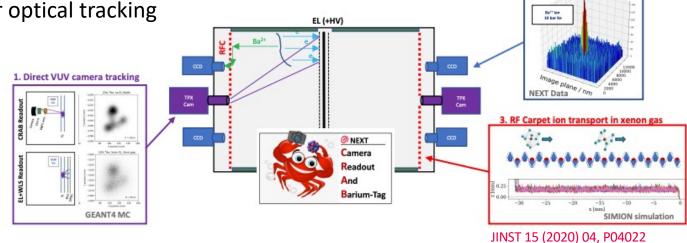
Nature 583 (2020) 7814, 48–54, arXiv:2201.09099



Ba tagging demonstrator phases

Demonstrator phases under intensive development under 2-3 yr time-scale

NEXT-BTD Concept


- BTD: Barium Tagging Detector
- Bring the sensor to the singleion location

NEXT-CRAB Concept

CRAB: Camera Readout and Barium Tagging

High speed cameras for optical tracking

- MCP-PMT development for energy measurement
- Bring ion to sensor using RF-carpet

2. Single Ba2+ ion tagging w/SMFI

Summary

- The NEXT experiment is a high-pressure xenon TPC searching for $0 \nu \beta \beta$ decay with a phased program
- Sub-percent energy resolution is achievable using electroluminescent amplification
- Topological information is used to effectively reject single-electron backgrounds
- NEXT-100 experiment is in the final stages of construction
- Subsequent phases at the tonne scale aim to enter the inverted hierarchy region
- Barium tagging R&D program is making good progress with single ion sensitive compounds with demonstrator phases aiming for results in the next few years

