

The T2K Near Detector Upgrade

Aoi Eguchi on behalf of the T2K collaboration eguchi@hep.phys.s.u-tokyo.ac.jp

Outline

- Introduction to the T2K experiment
- Plans for the upgrade of near detector ND280
- Design of new detectors: SuperFGD, High-Angle TPC and Time-of-Flight detector
- Expected improvement with the ND280 upgrade
- Conclusion and Future

T2K Experiment Overview

- Long-baseline neutrino oscillation experiment.
 - J-PARC accelerator and neutrino beamline: Generate neutrino beam.
 - On- and off-axis near detectors (280 m) : Monitor the beam and constrain the systematics.
 - Far detector Super-Kamiokande (295 km) : Detect oscillated neutrinos.
- Physics Goals:
 - Test of CP symmetry in the leptonic sector.
 - ullet Precise measurements of $heta_{23}$ and Δm_{32}^2
 - ullet Determination of mass ordering, and the octant of $heta_{23}$.

Recent Status and Future of T2K

- Neutrino oscillation measurements:
 - Disfavored the CP conservation at the 2σ C.L. [Phys. Rev. D 103 (2021), 112008, Phys. Rev. D 103 (2021), L011101, Nature 580 (2020) 7803, 339-344]
- Cross-section measurements
 - Keep updating results on various channels, ν types and target material. [PTEP 2021 (2021) 4, 043C01, Phys. Rev. D 101, 112004 (2020), JHEP 2020, 114 (2020)]
- In order to search for CP violation at > 3σ C.L., these are the expected upgrades:
 - Neutron tagging using Gd at Super-Kamiokande.
 - J-PARC accelerator upgrade (double repetition rate&beam power).
 - Near detector ND280 upgrade in 2023.
 - Hyper-Kamiokande project.

T2K Near Detector "ND280"

- ullet T2K near detector complex "ND280" is located 280 m downstream the ν generation target.
 - Measure the neutrino cross-sections and constrain the uncertainties in the oscillation analysis.
- Tracking detectors
 - Targets are two Fine-Grained Detectors (FGD).
 FGD1 consists of scintillator and FGD2 consists of scintillator+water.
 - Three Time Projection Chambers (TPC) filled mainly with Ar gas provide particle ID based on dE/dx and momentum measurement.
- Surrounded by
 - Side Muon Range Detector (SMRD)
 - Electromagnetic Calorimeters (ECal)
 - Pi-0 detector (P0D)
- 0.2 T horizontal dipole magnetic field is applied.

Limitations of Current ND280

- Limited acceptance for particles with a large scattering angle.
 - TPCs are located at downstream of FGDs.
 - FGDs consist of scintillator bars perpendicular to the beam direction.
- High detection threshold for protons.
 - Short protons cannot be reconstructed in FGD.
- No neutron information.
- ullet Poor electron/photon separation for the u_e measurements.

ND280 Upgrade

 \bullet Pi-0 detector will be replaced with new 4π acceptance detectors.

• SuperFGD : fully active plastic scintillator.

• High-Angle TPC: high resolution tracking of charged particles.

• Time-of-Flight : Provide time information.

Technical Design Report on <u>arXiv:1901.03750</u>

High-Angle TPC (HATPC)

Super Fine-Grained Detector (SuperFGD)

Time-of-Flight (TOF)

SuperFGD

- Fully active plastic scintillator.
 - Consists of $\sim 2.1 M$ plastic scintillator cubes (1 cm³).
 - 2.2 tons target mass.
 - Photons are read out through wave-length shifting (WLS) fibers in three orthogonal directions and detected by Multi Pixel Photon Counters (MPPC).

- Expected features of SuperFGD
 - 3D tracking&reconstruction capability.
 - Lower energy threshold for protons (500 \rightarrow 350 MeV/c).
 - Neutron kinematics measurement using time of flight [Phys. Rev. D 101, 092003].
 - Better electron/photon separation capability.

SuperFGD Construction&Performance

- Cubes and box
 - All (~2.1 M) cubes have been produced at INR and delivered to J-PARC.
 - All (~57 k) fibers have been produced and will be inserted into the cubes.
 - Box design has been validated with prototypes.
 - It needs to withstand 2 tons of weight and earthquakes.
- Electronics
 - Design of the readout front-end is finished.
 - 400 MHz sampling provides 2.5 ns timing information.
 - Integrated calibration system for the regular MPPC calibration.

Mechanical box

- Prototype beam test at CERN and LANL
 - Charged particle test beam at CERN [DOI:10.1016/j.nima.2018.09.048,
 JINST 15 P12003 (2020)].
 - Neutron test beam at LANL [arXiv:2207.02685] (talk by Ciro right after this).
 - Positron test beam at Tohoku Univ.

Scintillator cubes

Measured dE/dx for different particles

High-Angle TPC

- Two new TPCs are produced.
 - Provides tracking and particle ID.
 - Dimensions: $1.865 \times 2.0 \times 0.82 \text{ m}^3$.
 - Composite material for the field cage.
 - Same T2K gas (Ar : CF_4 : $iC_4H_{10} = 95 : 3 : 2$).

- Bulk Micromegas readout module replaced by new resistive Micromegas Modules (ERAM).
 - Spread the charge over multiple pads, improving the spatial resolution and reducing the number of readout pads.

 resistive anode MicroMegas
 - No need for spark protection.

HA-TPC Test Beam Performance

- Prototypes have been tested in test beams at DESY/CERN
 - CERN 2018 [DOI:10.1016/j.nima.2019.163286]
 - DESY 2019 [DOI:10.1016/j.nima.2021.166109]
 - DESY 2021 (analysis ongoing)
 - CERN November 2021 (analysis ongoing)
 - Sources are μ , e, p, π (up to 5 GeV/c), cosmic, and 55 Fe (for calibration)
 - Various configurations were tested.
- Confirmed that it fulfills:
 - Spatial resolution < 0.8 mm for all angles.
 - dE/dx resolution < 10%.
 - ▶Fully satisfy the requirements for the ND280 upgrade.
- New reconstruction algorithms are being developed based on test beam data.

Beam test setup at DESY

Time-of-Flight Detector (TOF)

- Six TOF planes will cover 2 HA-TPCs and SuperFGD.
 - Each plane of $2.2 \times 2.4 \text{ m}^2$ consists of 20 scintillator bars.
 - Readout with 16 MPPCs at both ends of each bar.
- Provide a time stamp for each track.
 - To identify the direction of the tracks and reduce the background.
 - The cosmic trigger for the calibration of SuperFGD and HA-TPCs.
- The average double sided time resolution of one bar was measured to be 0.14 ns [JINST 17 P01016 (2022)]
 - It satisfies the requirements of ND280 upgrade.

Expected Performance

- Improved kinematic range
 - Better efficiency for the entire phase space (similar to the far-detector)
 - 3D tracking for both lepton and hadrons.
 - Allow access to transverse variables.
 - Better understanding of nucleon FSI and other nuclear effects.
 - Reduce neutrino energy bias.
 - Better separation of electron/photon.

Muon detection efficiency vs angle

Efficiencies as a function of momentum

Neutron detection using ToF

Electron/photon separation

Physics Sensitivity Studies

- Expected physics sensitivity using the upgraded detectors was studied [arXiv:2108.11779]
 - By adding new transverse variables: δp_T , $\delta \alpha_T$, E_{vis} .
- Allows a constraint on 1p1h (CCQE) as good as ~1.5% (~2%) in ν ($\bar{\nu}$) interactions.
 - For npnh, a constraint better than 5% (10%) in ν ($\bar{\nu}$) interactions.

Summary

- Goal of T2K is to search for CP violation with a significance of $>3\sigma$.
 - We are aiming to reduce total systematics with upgraded near detectors.
- ND280 upgrade is in the preparation stage
 - Installation is expected in the first half of 2023.
 - The tested performance of SuperFGD, HA-TPC and ToF planes fully meets the requirements of the ND280 upgrade.
 - ND280 upgrade shows the impressive ability to constrain key systematic uncertainties.

Taken from: http://j-parc.jp/c/topics/quarterly/index.html

Thank you for your attention!

T2K-Related Talks in NuFACT 2022

- Plenary
 - Status of T2K (Laura Kormos)
- WG1 (Neutrino Oscillation Physics)
 - T2K improved neutrino-nucleus interaction model tuned to global data (Stephen Dolan)
 - Latest results on T2K Near Detector constraints for neutrino oscillation measurements (Callum Wilkinson)
 - T2K oscillation analysis results: latest analysis improvements at the far detector (Kenji Yasutome)
- WG2 (Neutrino Scattering Physics)
 - T2K latest results on neutrino-nucleus cross section (Andrew Cudd)
- WG3 (Accelerator Physics)
 - First result of the high repetition operation in J-PARC MR (Takaaki Yasui)
 - Proton Beam Monitor Upgrades for the J-PARC Neutrino Extraction Beamline (Megan Friend)
 - New muon monitor for J-PARC neutrino experiment (Takashi Honjo)
- WG6 (Detectors)
 - The T2K Near Detector upgrade (Aoi Eguchi) [this talk]
 - Total neutron cross section measurement on CH with a novel 3D-projection scintillator detector (Ciro Riccio)
 - Construction of a new scintillation tracker in T2K experiment (Masaki Kawaue)
 - 3D segmented scintillator neutrino detector SuperFGD for T2K experiment (Christopher Mauger)
 - Characterization of the ERAM detectors for the High Angle TPC of the T2K ND upgrade (Claudio Giganti, Matteo Feltre)

Backup

Current Systematic Uncertainties

- The systematic uncertainties on the predicted event rates in the SK samples.
 - Total systematics error is ~6%.
 - The goal is to bring this number down to \sim 4% for T2K-II, and to \sim 3% or below for Hyper-Kamiokande.

Taken from: Phys. Rev. D 103 (2021), 112008

TABLE XIII. Fractional uncertainty (%) on event rate by error source and sample, calculated with expected event rates generated according to the nominal oscillation parameter values from Table III. The final column is the fractional uncertainty (%) on the ratio of FHC/RHC events in the one-ring *e* sample. The final row, "all systematics," does not include the effects of any oscillation parameters.

	One-ring μ		One-ring e			
Error source	FHC	RHC	FHC	RHC	FHC 1 d.e.	FHC/RHC
Flux and (ND unconstrained)	14.3	11.8	15.1	12.2	12.0	1.2
cross section (ND constrained)	3.3	2.9	3.2	3.1	4.1	2.7
SK detector	2.4	2.0	2.8	3.8	13.2	1.5
SK FSI + SI + PN	2.2	2.0	3.0	2.3	11.4	1.6
Nucleon removal energy	2.4	1.7	7.1	3.7	3.0	3.6
$\sigma(u_e)/\sigma(ar u_e)$	0.0	0.0	2.6	1.5	2.6	3.0
ΝC1γ	0.0	0.0	1.1	2.6	0.3	1.5
NC other	0.3	0.3	0.2	0.3	1.0	0.2
$\sin^2 \theta_{23}$ and Δm_{21}^2	0.0	0.0	0.5	0.3	0.5	2.0
$\sin^2 \theta_{13}$ PDG2018	0.0	0.0	2.6	2.4	2.6	1.1
All systematics	5.1	4.5	8.8	7.1	18.4	6.0

Neutrino Interaction Uncertainties

- Better understanding of the neutrino interaction is critical for the future oscillation analysis.
 - We need to deal with complex multi-body effects.

- Powerful variables to directly measure the nuclear effect.
 - Missing momentum $\delta p_T = |p_T^{\mu} + p_T^{p}|$
 - Transverse boosting angle $\delta \alpha_{\tau} = \arccos \frac{-p_T^{\iota} \cdot \delta p_T}{|p_T^{l} \cdot \delta p_T|}$
 - Visible energy $E_{\rm vis} = E_{\mu} + T_p$
 - δp_T vanishes in the absence of nuclear effects

Oscillation Analysis Overview

- Compare observed data at the far detector to predictions based on a model of the experiment to make measurements.
 - Produce both frequentist and Bayesian results.

Near and far detector fits done sequentially or simultaneously depending on analysis