

DsTau (NA65) Experiment:

Study of Tau Neutrino Production at CERN/SPS

Elena FIRU

on behalf of the DsTau (NA65) Collaboration

Institute of Space Science, Bucharest, Romania

Study of tau neutrinos

✓ Tau neutrino is one of the least studied particles

- only a few measurements:
 - Direct v_{τ} beam: **DONUT** (DIS) first direct evidence of tau-neutrino interaction
 - Oscillated ν_{τ} : **OPERA** (DIS), **Super-K** (QE), **IceCube** (DIS).
- cross section error >50% (DIS) due to systematic uncertainty in ν_{τ} production

✓ A new precise measurement of the v_{τ} cross section

- test lepton universality
- new physics effects in v_{τ} CC interactions

\checkmark Future v_{τ} measurements

- SHiP (SPSC-P-350): high statistics measurement at the SPS
- reduce statistical uncertainty from 33% in DONuT
- indirectly FASER

Cross section measurements of the three neutrino flavors (in high-energy region)

Forward charm production

✓ The intrinsic charm parameterization predicts an enhancement of forward charm production

- May change forward neutrino rate
- Could be a key input for high energy neutrino measurements by large scale Cherenkov observatories such as IceCube

✓ Neutrino experiments need data on the forward charm production

The DsTau (NA65) experiment – physics goals

- ☐ DsTau goals
 - Study of the tau neutrino production by \mathbf{D}_{s} decays
 - reduce the systematic uncertainty of v_{τ} flux production from 50% to 10 %
 - first measurement of D_s double differential production cross section
 - fundamental input for future v_{τ} experiment (*like FASER*, *SHiP*)
 - **☐** By product: Study of open charm production
 - In tungsten/molybdenum target: ~ 4.5 x 10⁵ charm pairs produced
 - In other materials (emulsion/plastic): ~ 2.7 x 10⁵ charm pairs produced
 - Detection of ~10⁵ charm pairs

☐ Principle of the experiment:

- detection of "double-kink + charm decay" topology within few mm
- 4.6×10^9 protons, 2.3×10^8 proton interactions in tungsten/molybdenum

1000
$$\longrightarrow$$
 $D_s \rightarrow \tau \rightarrow X decays$

Double charm hadron production L

4

DsTau (NA65) @ CERN

- ☐ DsTau is an experiment of **SPS Research Programme** with the title "Study of tau neutrino production"
- ☐ It was approved as NA65 experiment in June 2019
- ☐ Detectors: modules of Nuclear Emulsions interlaid with tungsten/molybdenum, plastic in first part, and lead/tungsten plates, plastic in the second part
- ☐ Milestones:

Test beam 2016

• Test of detector structure

Test beam 2017

- Improved detector structure
- Refine exposure scheme

run 2021 2022

Pilot run 2018

- 1/10 of the full-scale experiment with tungsten target
- 30 modules, 50 m²

Physics run 2021-2022

- Full scale experiment with tungsten and molybdenum targets
- Aiming at 1000 $D_s \rightarrow \tau \rightarrow X$ events
- 10 % uncertainty on ν_{τ} flux

Nuclear emulsion detector

Emulsion layer 70 μm

cross-sectional view of an emulsion film

electron microscope picture of silver halide crystals

Single emulsion film

High angular resolution tracker

NuFACT 2022

Experimental set-up (2016, 2017, 2018)

Emulsion based detector structure for $D_s \to \tau \to X$ measurement

1 module

Experimental set-up

Module structure for momentum estimation was change for 2021 physics run

✓ Momentum measurement is relevant to reject low energy events (MCS mimicking $D_s \rightarrow \tau \rightarrow X$ events)

Proton beam (Z) - 10⁵ protons/cm² (uniform irradiation)

- Initial structure had more material → too high track density
 - Dedicated scanning is required
- Reduce material, but still sufficient performance
- Making data taking procedure simple

NuFACT 2022

10 units

	Initial: lead emulsion ECC	New: additional tungsten units
Structure	25 – 1 mm lead, 26 emulsion plates	3 - 0.5 mm tungsten, 25 emulsion plates
Momentum resolution	15 – 40 % (upstream ev.) 35 – 45 % (downstream ev.)	15 – 40 % (upstream ev.) 35 – 45 % (downstream ev.)
Weight	15.0 kg	2.4 kg

downmost tungsten plates:

Data acquisition

Step 1

- Full area scanning by a fast scanning system to select $\tau \to X$
- It selects decays with $\Delta\theta > 100$ mrad

Hyper Track Selector (HTS)

Step 2

- Precision measurement to detect $D_s \rightarrow \tau$ decay (a few mrad)
- Dedicated high-precision systems

Angular resolution ~0.3 mrad

Alignment and track reconstruction

- ✓ alignment algorithm very precise sub micron
- ✓ track reconstruction positions and angular correspondences
- ✓ average efficiency is higher than 95%.
- ✓ proton beam tracks were checked in detail
- ✓ processing in subvolues 1.5 cm x 1.5 cm x 30 plates

(two tungsten plates to reject low momentum daughter candidates)

Alignment and track reconstruction

- ✓ film to film alignment and track reconstruction procedures require powerful processing servers with large memory (~128 256 GB of RAM) and disk space (~5-10 TB for each data module) resources
- ✓ up to now 25 out of 30 modules for 2018 pilot run have been fully processed (track reconstruction)
- ✓ the batch system of the CERN computing center is also going to be used to process the next physics runs data

Elena Firu NuFACT 2022

Vertex reconstruction

A double charm candidate event

with a neutral 2 prong (vee) and a charged 1 prong (kink) topology

- / Kink
- IP of daughter 291.6 μm
- FL 2536.6 μm
- Kink angle 118 mrad
- ✓ Vee
- IP of daughters 20.9, 109.7 μm
- FL 554.5 μm
- Opening angle 242 mrad

Reconstructed vertex position in tungsten

- ✓ fine detector structure is observed by reconstructed vertices
- ✓ the results will be summarized into a paper soon

Elena Firu NuFACT 2022

Search for $D_s \rightarrow \tau$ events from 2018 pilot run

- $\checkmark D_s \rightarrow \tau$ decay has a small kink angle ~ 7 mrad.
- ✓ An automated search of small kinks has been implemented

- ✓ initial, it was planned to use >200 m² emulsion but due to Covid19 the emulsion production is slowed down in Japan
- ✓ the number of detector modules is reduced to 110 m² (\simeq 2200 films) 17 modules in total
- ✓ emulsion film size was changed at 25 cm x 20 cm = $4 \times 2018 \text{ NE size}$

Film automated production facility in Nagoya

■ speed production increases from about 6m²/week to 10m²/day

- ✓ new target mover
- ✓ XDWC for beam profile monitor
- ✓ Two scintillators measured beam intensity in real-time

table

15

- ✓ first time the development of nuclear emulsion film after irradiation took place at the facility from CERN
- ✓ 2021 physics run development campaign lasted 3 weeks
- ✓ ~ 2200 films were developed

✓ development facility was fully renovated by CERN for 2022 physics run

Elena Firu

Future plan runs

✓ Emulsion film production

- \triangleright Limited amount of emulsion films ($\approx 100 \text{ m}^2$) for 2022 physics run
 - Short beam time (1 week) between 12 19 October @ H4

	Plan 2021	Updated plan 2022	Number of modules
2018 pilot run	50 m^2	50 m ² (1w)	30 modules
2021 run	100 m^2	110 m ² (2w)	17 modules
2022 run	450 m ²	110 m ² (1w)	17 modules
2023 run	0 m^2	330 m ² (3w)	51 modules

✓ Need an additional data taking in 2023 for 3 weeks

Summary

☐ DsTau (NA65) goal:

- to detect $1000 \text{ D}_s \rightarrow \tau$ decays in 2.3×10^8 proton interactions in order to reduce the systematic uncertainty in flux measurements from >50% to 10%
- study of open charm production

☐ Current results:

- data reconstruction and analysis (data/MC, double charm) from 2018 pilot run are ongoing first physics results will be published soon
- 2021 physics run, data taking campaign was successfully finished, we start data acquisition
 - 30% of planned exposure was done
 - Monte Carlo simulation with FLUKA and Geant4 soon we will start

☐ Preparation for 2022 physics run ongoing is in progress

Elena Firu NuFACT 2022

Thank you for your attention!

Back – up slides

Study of Proton interaction with tungsten

- ✓ Proton interaction vertices location by fine alignment on the material boundaries.
- ✓ Secondary tracks multiplicity distribution by each detector components

Momentum estimation by MCS (multiple coulomb scattering)

- ✓ distribution of the projected scattering angle on the X-plane VS projected angle on the Y-plane
- ✓ from Gauss fit $\rightarrow \sigma$ is determined \rightarrow momentum was estimated

For momentum > 30 GeV/c, scattering angles < angular resolution

MCvsEST

- ✓ Fit with line $p_{est} = m * p_{MC}$, where $m = 0.83 \pm 0.01$ (~40°)
- ✓ For larger MC momenta, estimated momenta has larger errors

- ✓ 17 modules were exposed
 - 12 tungsten and 5 molybdenum targets for analysis part
- ✓ all modules are ready to be scanned & scanning started

D_s momentum reconstruction

- ✓ Ds momentum directly measurement it is difficult due to short lifetime
- ✓ DS momentum cannot be directly determined and momentum is reconstructed by topological variables

✓ The variables are put in a neural network to determine momentum resolution

D_s efficiency detection

Selection Criteria	Efficiency (%)
(1) Flight length of $D_s \ge 2$ emulsion layers	77
(2) Flight length of $\tau \ge 2$ layers & $\Delta\theta(D_s \rightarrow \tau) \ge 2$ mrad	43
(3) Flight length of $D_s \! < \! 5$ mm & flight length of $\tau \! < \! 5$ mm	31
$(4) \Delta \theta(\tau) \ge 15 mrad$	28
(5) Pair charm: 0.1 mm < flight length < 5 mm (charged decays with $\Delta\theta$ > 15 mrad or neutral decays)	20

Results from DONuT

v_{τ} CC cross section as a function of the parameter n

Using PYTHIA-derived value of n=6.1

$$\sigma_{V\tau}^{const} = (0.39 \pm 0.13 \pm 0.13) \times 10^{-38} cm^2 GeV^{-1}$$

$$\sigma_{v\tau}^{const} = 7.5(0.335 \, n^{1.52}) \times 10^{-40} \, cm^2 GeV^{-1}$$

Phenomenological formula for differential production crosssection of charmed particles

$$\frac{d^2\sigma}{dx_F dp_T^2} \propto (1 - |x_F|) \exp(-bp_T^2)$$
longitudinal transverse dependence dependence

No published data giving n for D_s produced by 800 GeV proton interactions

Systematic uncertainties	
D _s differential cross section (x _F dependence)	~0.50?
Charm production cross section	0.17
Decay branching ratio	0.23
Target atomic mass effects (A dependence)	0.14

D_s differential cross section

Parametrization used in DONUT

$$\frac{d^2\sigma}{dx_F dp_T^2} \propto (1 - |x_F|)^n \exp(-bp_T^2)$$
longitudinal transverse dependence dependence

 x_F is Feynman x ($x_F = 2p^{CM}_Z/Vs$) and p_T is transverse momentum

Results from DONuT

 v_{τ} CC cross section as a function of the parameter n

reconstructed x_F (corrected by the efficiency)

an experiment with 1000 events \rightarrow estimate of parameter n

NuFACT 2022

estimated parameter *n*

For future measurement, a more appropriate parametrization will be used

Using PYTHIA-derived value of n = 6.1

28

Experimental set-up - 2018 pilot run

Experimental setup at H4 beam line

scintillator for intensity driven control

Elena Firu NuFACT 2022

29