

Multi-PMTs at the Water Cherenkov Test Experiment /IWCD at Hyper-K

Ryosuke Akutsu (TRIUMF)

On the behalf of the Hyper-Kamiokande collaboration

E-mail: rakutsu@triumf.ca

August 2, 2022/WG6, NuFact2022

The Hyper-Kamiokande Long-Baseline Program

Sensitivity to CPV

- Will perform the long-baseline program with high purity $v_{\mu}/\overline{v}_{\mu}$ beam, following the successful T2K experiment
- ◆ Measurements will be systematically limited due to ~20 times higher interaction rate compared to T2K
- \bullet The $v_e/\overline{v_e}$ cross-section uncertainties will the dominant errors in CP violation studies

Intermediate Water Cherenkov Detector (IWCD)

- Sub-kiloton scale water Cherenkov detector (Φ8m x 6m)
 - will be located at ~1 km away from the beam source
 - 480 multi-PMT modules inside the tank
 - 60 tons of fiducial volume for v_e/\overline{v}_e cross-section measurements

- ♦ Will test new technologies in both hardware and software, which will be used in the Hyper-K experiment
- \bullet Responses to known particle fluxes (e, μ , π , p, potentially γ) will be studied
- ◆ Measurements of Cherenkov light emission profile and secondary neutrons are also planned

Multi-PMT (mPMT) module

◆ 19 x 3" diameter photomultiplier tubes (PMTs) are integrated in a water-tight module

Hamamatsu R14374

Optical silicone gel

Reflector

High voltage circuits

High voltage & readout electronics

- ♦ High voltage generated with Cockroft-Walton circuit
 - Lower power consumption compared to resistive base

Controller & signal board

Cockroft-Walton circuit

- ◆ 20-channel 125 MSPS FADC mainboard
 - Full waveform can be readout, allowing better pile-up event identification
 - Digitization and pulse-finding are done
 - LEDs are mounted for detector calibration

Why mPMT?

Simulated an electron event

mPMT geometry

8" PMT geometry

- ♦ IWCD is much smaller than the Hyper-K detector → distance to the detector wall is shorter
- ◆ mPMT provides higher granularity and better timing resolution thanks to 3" PMTs
 - → Higher event reconstruction performance near the detector wall

- $\bullet v_e/\overline{v}_e$ fluxes make up only ~1% of the total beam flux
 - \rightarrow e/ μ separation is particularly important for v_e/\overline{v}_e cross-section measurements
- \bullet mPMT provides better e/ μ separation near the wall

- ◆ 3" PMTs for event reconstruction
 - Granularity for particle identification
 - Timing resolution for vertexing
 - Gain for momentum estimation
- ◆ LEDs for detector calibration
 - Fast pulsed LED (0.6 ns FWHM) for PMT's timing offset and light scattering measurements
 - 230 700 nm available
 - Continuous LEDs for in-situ measurements of mPMT's positions by photogramatery technique
- ◆ Scintillator plates for OD veto
 - Tagging charged particles crossing from the OD to ID regions

- ◆ Measured timing resolution at 1 p.e. level is 1.5 ns (FWHM)
- ♦ Measured gain was uniform within ~10%, depending on the dynode orientation

Single PMT measurements: dark rate & after-pulse

- ◆ Measured dark rates are lower than 1 kz, which satisfies the requirement
- ◆ Measured after-pulse rate is acceptable

Mechanical assembly w/ ex-situ gelling

♦ 19 x 3" PMTs are individually gelled, using gelling mold

◆ The gelled PMTs are placed on the support matrix

◆ Acrylic dome and PVC cylinder are lowered onto matrix and are screwed down to backplate

- ◆ Full contacts between the acrylic dome and 19 gelled PMTs have been achieved
- ♦ PMT measurements of a fully assembled module is ongoing

Support matrix

Mechanical assembly w/ in-situ gelling

◆ 19 x bare 3" PMTs are placed on the matrix, and acrylic dome and PVC cylinder are lowered on support matrix

◆ The semi-assembled module is turned up-side down

- ♠ Mixed gel is pored directly into the module, and backplate is attached to the module
- ◆ Results of full assembly test are encouraging
 - Further modifications are being made

Conceptual design

mPMT test stand

- ◆ Will calibrate 3" PMTs integrated in module by using a 2D gantry system with pulsed light source
 - High voltage
 - Gain/detection efficiency
 - Timing resolution

- ♦ A test stand being developed
 - Can operate with both uniform and collimated light sources, allowing position dependence measurements
 - Temperature controlled

mPMT test stand

Efficiency (# pulses/# registered waveforms)

- ◆ Commissioning was done with bare 3" PMTs (i.e. no optical gel and no acrylic dome)
- ◆ Distinct two circles were observed, indicating that the system is working
- ◆ Initial scan for a fully integrated mPMT module is ongoing

Photosensor Test Facility

- ◆ This facility enables making further detailed measurements in water
 - Can measure magnetic field/polarization dependence
- ◆ Currently Super-Kamiokande's 20" PMT is being measured
 - → mPMT module will be measured

Summary

- ◆ The size of the IWCD detector will be much smaller than the Hyper-K detector.
- ◆ Thus, IWCD is required to use photosensor that has higher granularity and better timing resolution compared to the 20" PMT used in the Hyper-K detector
- ♦ Multi-PMT module consisting of 19 x 3" PMTs has been developed and can be used in many different ways: event reconstruction, detector calibration, and OD veto
- ◆ Module assembly methods have been developed and PMT measurements with a fully integrated module is ongoing
- ◆ ~100 mPMT modules will be produced and be tested with the WCTE detector in the water Cherenkov test experiment before the IWCD experiment

Backup