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Why talk about light sterile neutrinos?
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LSND Anomaly (1990°s)
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A direct test of the LSND Anomaly using an improved decay-at-rest beam facility and
experimental arrangement has just begun in the form of the JSNS? experiment.
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https://doi.org/10.1103/PhysRevD.64.112007

Gallium Anomaly (1990°s-...)

SAGE/GALLEX experiments used *>*Cr and 3’Ar
radioactive sources (producing ve) for calibration of
their Gallium detectors
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The development of new radioactive sources and detectors for improved direct tests of the Gallium Anomaly has been
pursued and realized in the form of the BEST experiment (which confirmed the anomaly).

BEST (2021)
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https://www.annualreviews.org/doi/pdf/10.1146/annurev-nucl-101918-023755
https://arxiv.org/pdf/2109.11482.pdf

The community has just begun a 100
comprehensive accelerator-based
short-baseline program that is
capable of directly testing MiniBooNE

(and LSND) Anomaly interpretations
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https://inspirehep.net/literature/1804293

Reactor Anomaly (2010°s)

deficit of reactor ;e event rate, ~20

Re-analysis of reactor antineutrino Giunti & Lasserre (2019)
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The Reactor Antineutrino Anomaly and subsequent reactor-based activities and new results have placed a required
emphasis on experiments that directly test Reactor Anomaly interpretations as well as improve our understanding
of reactor neutrino fluxes.

o PN ALFRED P. SLOAN . A
@:«@ae S FOUNDATION Georgia Karagiorgi, NuFact 2022 6



https://www.annualreviews.org/doi/pdf/10.1146/annurev-nucl-101918-023755

What the four anomalies have in common:

What the four Anomalies have in common:

) (=)
e Electron (anti)neutrino observations which deviate from expectation, from 'Vf‘ - —> e
either electron or muon (anti)neutrino sources (—)
e L/Eof0.1-10 m/MeV '\]c —%E
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Leading interpretation
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“Vanilla” light sterile neutrino oscillations . ;
. m’ (eV?)
Am? ~ 1 eV? — oscillations at L/E ~ 1 m/MeV (ma)'—r = v,

Expect:
v’ Electron neutrino disappearance ~ O(10%)
2 Muon neutrino disappearance ~ O(10%)
v’ Muon to electron neutrino appearance ~O(1%) ()

Probability amplitudes are proportional to

electron and/or muon flavor content(s) (m,)? . . Ve
of new mass states . | vy,
(m,) . v .V,
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“Vanilla” light sterile neutrinos:
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Global picture

Georgia Karagiorgi, NuFact 2022 9



https://arxiv.org/pdf/1906.00045.pdf

“Vanilla” light sterile neutrinos: Global picture
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https://arxiv.org/pdf/1906.00045.pdf
https://www.annualreviews.org/doi/pdf/10.1146/annurev-nucl-101918-023755

“Vanilla” light sterile neutrinos:

Findings after combining anomalies in
global fits with other relevant
experimental constraints

1.

The “3+1” scenario is much
more preferred than null

There is a large tension between
appearance and disappearance data
sets, and incompatibility of
parameters preferred by
appearance vs. disappearance
experiments

Some of this tension can be relieved
with omission of MiniBooNE
low-energy excess
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https://arxiv.org/pdf/1906.00045.pdf
https://www.annualreviews.org/doi/pdf/10.1146/annurev-nucl-101918-023755

“Vanilla” light sterile neutrinos: Global picture

Caveats!

1. For awhile, global fits had been carried out
with not very rigorous statistical treatment
of data, e.g. no Feldman-Cousins corrections

2.  Multiple experimental data sets share
systematic correlations; are these properly
treated in global fits?

3. Individual data sets are treated assuming
appearance-only or disappearance-only
signal predictions—an assumption valid only
for small mixing amplitudes

4.  What is the source of the MiniBooNE
anomaly? Should it be interpreted as flavor
transitions, or something else?
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“Vanilla” light sterile neutrinos: Global picture

Over the past decade, an extensive experimental
program has been mounted delivering more sensitive
tests to this interpretation:

Caveats!

1. For awhile, global fits had been carried out
with not very rigorous statistical treatment

of data, e.g. no Feldman-Cousins corrections Accelerator-based searches:

2.  Multiple experimental data sets share Decay-at-Rest: NEV\%"W;;?
systematic correlations; are these properly LSND, KARMEN @
treated in global fits? Decay-in-Flight:
MiniBooNE, NOMAD, OPERA, NOVA, T2K,
3. Individual data sets are treated assuming CDHS, CCFR MINOS/MINOS+, NOVA
appearance-only or disappearance-only MicroBooNE

signal predictions—an assumption valid only
for small mixing amplitudes

4.  What is the source of the MiniBooNE
anomaly? Should it be interpreted as flavor
transitions, or something else?
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“Vanilla” light sterile neutrinos: Global picture

Over the past decade, an extensive experimental
program has been mounted delivering more sensitive
tests to this interpretation:

Caveats!

1. For awhile, global fits had been carried out
with not very rigorous statistical treatment

of data, e.g. no Feldman-Cousins corrections Searches with radioactive sources and at reactors:

2. Multiple experimental data sets share Reactors: NEV%"Y;;?

systematic correlations; are these properly Bugey, Chooz
i ?
treated in global fits? Doublethoos,

3. Individual data sets are treated assuming RENO, Daya-Bay,
appearance-only or disappearance-only DANSS, NEQOS, Neutrino-4
signal predictions—an assumption valid only PROSPECT, STEREO
for small mixing amplitudes

Sources:
4.  What is the source of the MiniBooNE SAGE, GALLEX BEST

anomaly? Should it be interpreted as flavor
transitions, or something else?
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“Vanilla” light sterile neutrinos: Global picture

Over the past decade, an extensive experimental
program has been mounted delivering more sensitive
tests to this interpretation:

Caveats!

1. For awhile, global fits had been carried out
with not very rigorous statistical treatment

of data, e.g. no Feldman-Cousins corrections Atmospheric/solar neutrino-based searches:

2. Multiple experimental data sets share Atmospheric: NEV\gé)ny;Lisst
systematic correlations; are these properly Super-K @
treated in global fits?

3. Individual data sets are treated assuming IceCube/DeepCore,
appearance-only or disappearance-only ANTARES, Super-K
signal predictions—an assumption valid only
for small mixing amplitudes Solar: Recent re-analyses

4.  What is the source of the MiniBooNE
anomaly? Should it be interpreted as flavor
transitions, or something else?
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Accelerator-based searches

ALFRED P. SLOAN
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Over the past decade, an extensive experimental
program has been mounted delivering more sensitive
tests to this interpretation:

Accelerator-based searches:

NEW in ~last

Decay-at-Rest:

10 years

LSND, KARMEN
Decay-in-Flight:

MiniBooNE, NOMAD,
CDHS, CCFR

OPERA, NOVA, T2K,
MINOS/MINOS+, NOVA
MicroBooNE

Some highlights in next slides...
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Accelerator-based searches

MicroBooNE: A direct test of the MiniBooNE anomaly:

No evidence of electron excess...
Phys.Rev.Lett. 128 (2022) 24. 241801
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Ruled out the possibility of
mis-understood/enhanced leading
backgrounds as an interpretation

of the MiniBooNE excess

or photon excess!

Phys. Rev. Lett. 128, 111801 (2022)
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.111801
https://arxiv.org/abs/2110.14054

Accelerator-based searches

MicroBooNE: A direct test of the MiniBooNE anomaly:

No evidence of electron excess...
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Electron neutrino search has also been
reinterpreted as a search for light sterile
neutrino oscillations; see e.g.,
MICROBOONE-NOTE-1116-PUB

or photon excess!
Phys. Rev. Lett. 128,111
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https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1116-PUB.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.111801
https://arxiv.org/abs/2110.14054

Accelerator-based searches

Closing in on 3+1 parameter space:
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Accelerator-based searches

Upcoming experimental searches: SBN, JSNS?/JSNS?-1|, COHERENT
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Searches with radioactive sources and at reactors

Over the past decade, an extensive experimental
program has been mounted delivering more sensitive
tests to this interpretation:

Searches with radioactive sources and at reactors:

NEW in ~last

Reactors:
o 10 years

Bugey, Chooz

DoubleChooz,
RENO, Daya-Bay,
DANSS, NEOS, Neutrino-4
PROSPECT, STEREO

Sources:

SAGE, GALLEX BEST

Some highlights in next slides...
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Searches with radioactive sources and at reactors

Majority of recent reactor-based short-baseline oscillation searches have excluded the
majority of low-Am? region

1
\
i
S
N
SN T Y
-
g
/‘—
& 11
=1
<
| =—— RAA95%C.L. =
— = RAA99%C.L.
*  RAA: Best fit STERE
Stereo: L
[ Sensitivity Phasel+Phasell
conl :
10 B Excusion 60% C.L. Pha ~ PE
1071
in?(26ee)
—
&
<L
100 o L RAA allowed
RAA+GA < 90% CL
b) 9:3;:69'15/ 99% ‘E’ 95% CL
al reglons T
Hbestfit r [eewcL
=
N
10° e I===s = : 1= =
3 —— NEOS 90% CL
o — — Bugey-3 90% CL i
------- Daya Bay 90% CL, |
10! 3 =
=S5 L
\\\\\ %
DANSS (90% CL)| b
== CL, éxclusmn) DAr SS 2021 e | |
— Sensitivi 107 SRR P S W ui
1072 ) 1
102 101 10° 10 10 .
$in?26,. sin?28,,

< ALFRED P. SLOAN ) S
@@e S FOUNDATION Georgia Karagiorgi, NuFact 2022 22



https://arxiv.org/abs/1912.06582
https://arxiv.org/abs/1806.02784
https://arxiv.org/pdf/1809.10561.pdf
https://arxiv.org/pdf/2112.13413.pdf
https://arxiv.org/pdf/1610.05134.pdf

Searches with radioactive sources and at reactors

Majority of recent reactor-based short-baseline oscillation searches have excluded the
majority of low-Am? region

In combination with reactor-based long-baseline experimental measurements, have revealed

- _ S _ clear deficiencies in reactor flux modeling that
Single-isotope IBD yield extractions disagree with

flux model predictions, e.g. 235U seem to contribute significantly to reactor anomaly
2.0 S—
A Daya Bay
'g 50 —e— Huber model w/ 68% C.L. R D351 1239
w Daya Bay: PRL 118 (2017) 3.00 T New “>°U/“>”Pu beta-decay spect.ral
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i= ‘A | / 2.50 1 suggest possible calibration issue with
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Searches with radioactive sources and at reactors

BEST: A direct test of the Gallium anomaly:

e  Gallium source experiment, similar to GALLEX Measured rate lower than expected in both

51 ; .
e~ Crsource (3MCi) volumes; confirms Gallium anomaly at >5¢'!
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Atmospheric and solar neutrino based searches

Over the past decade, an extensive experimental
program has been mounted delivering more sensitive
tests to this interpretation:

Atmospheric/solar neutrino-based searches:

- NEW in ~last
Atmospheric: 10vyears
Super-K

ceCube/DeepCore,
ANTARES, Super-K

Recent re-analyses

Some highlights in next slides...

o PN ALFRED P. SLOAN - A
;@;a@a @ S FOUNDATION Georgia Karagiorgi, NuFact 2022 25




Atmospheric and solar neutrino based searches

IceCube/DeepCore:

Sensitivity to eV-scale sterile neutrinos due to matter-enhanced resonant disappearance for
atmospheric neutrinos traveling through the Earth, and fast oscillations that average out at
lower energies
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https://arxiv.org/abs/2204.00612

Atmospheric and solar neutrino based searches

IceCube/DeepCore + ANTARES + Super-K
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ANTARES: https://doi.org/10.48550/arXiv.1812.08650
Super-K: https://doi.org/10.1103/PhysRevD.91.052019
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https://doi.org/10.48550/arXiv.1812.08650
https://doi.org/10.1103/PhysRevD.91.052019

Atmospheric and solar neutrino based searches
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https://arxiv.org/pdf/2109.14898.pdf
https://arxiv.org/pdf/2111.12530.pdf

Other, complementary searches for eV-scale neutrinos

Searches for kinematic effects in beta decay experiments
(KATRIN), neutrinoless double beta decay experiments,
and electron capture experiments.
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https://indico.fnal.gov/event/43209/contributions/187858/attachments/129656/158440/Mertens_Neutrino_final.pdf

Closing in on “vanilla” sterile neutrinos

e At this point, the most persistent/compelling evidence for light sterile neutrino
oscillations comes exclusively from LSND, MiniBooNE, and Gallium experiments (BEST)

e Interpretationinterms of “vanilla” sterile neutrinos seems challenging, due to relatively
large mixings needed to describe observed signals

o More definitive tests are anticipated in the very near future by MicroBooNE, SBN, and JSNS?

e |ceCube/DeepCore shows interesting hints for more extended light sterile neutrino
scenarios

e The possibility of other conventional or new physics as underlying source(s) of the
anomalies remains, and needs to be explored with equal priority
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Where next?

Beyond “vanilla” scenarios!
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Where next? g

Commensurate with experimental searches, an extensive body of
theoretical work on alternative interpretations!

[See for a recent, thorough review of alternative interpretations] Dt
Of particular interest, “Dark Sector” Vu

physics models, e.g. neutrino scattering to
heavy neutrino through dark photon

Credit: M. Hostert
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https://indico.fnal.gov/event/22303/contributions/246075/attachments/157745/206534/theory_progress_hostert.pdf

Promising upcoming probes:

Disclaimer: Views are my own
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Promising upcoming probes: 1. CEVNS

Disclaimer: Views are my own
Coherent Elastic v-Nucleus Scattering (CEVNS):

A new, promising probe of all-active to sterile flavor oscillations
Unique in that it makes use of a well-understood, SM neutral-current (NC) process

COHERENT at the Spallation Neutron Coherent CAPTAIN-Miills at the Los
Source plans to search for NC-based Alamos Neutron Science Center also
all-active-flavor disappearance using explores CEVNS to probe the LSND result
multiple detectors: by both measuring v's ’ from z+

decay-at-rest as well as using z° decay in
flight to probe complementary dark sector
° 50 kg germanium PPC detector at 22 m physics [PhysRevD.106.012001]

° 610 kg LAr calorimeter at 28 m

° 10-kg Csl scintillation detector at 19.3 m
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https://doi.org/10.1103/PhysRevD.106.012001

Promising upcoming probes: 2. Multi-channel searches

Disclaimer: Views are my own
Highly-capable Liquid Argon Time Projection Chamber
(LArTPC) technology revolutionizing vBSM searches
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https://arxiv.org/abs/1503.01520
https://inspirehep.net/literature/1724672

Promising upcoming probes: 2. Multi-channel searches

Highly-capable Liquid Argon Time Projection Chamber
(LArTPC) technology revolutionizing vBSM searches

Sensitivity to 3+N oscillations through
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https://arxiv.org/abs/1702.01758

Promising upcoming probes: 3. Isotope DAR source

IsoDAR @ Yemilab, Korea

IsoDAR Collab, arXiv:2111.09480
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https://arxiv.org/abs/2111.09480

Promising upcoming probes: 3. Isotope DAR source

IsoDAR @ Yemilab, Korea

IsoDAR Collab,

arXiv:2111.09480
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https://arxiv.org/abs/2111.09480

The future is bright!
The next few to five years will be exciting, with new results anticipated from MicroBooNE,
SBN, JSNS2, and new probes:

Light sterile neutrino oscillations will be put through stressful tests, but not clear if they
will prevail as the underlying source of short-baseline anomalies.

At the same time, a plethora of new BSM interpretations will be the focus of upcoming and
proposed highly-capable experimental facilities!
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The future is bright! ...

The next few to five years will be exciting, with new results anticipated from MicroBooNE,
SBN, JSNS2, and new probes:

Light sterile neutrino oscillations will be put through stressful tests, but not clear if they
will prevail as the underlying source of short-baseline anomalies.

At the same time, a plethora of new BSM interpretations will be the focus of upcoming and
proposed highly-capable experimental facilities!

... or dark!?

Simulation
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Thank you!
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