

Mu2e

- Mu2e will search for a neutrino-less $\mu^- N \to e^- N$ conversion on Al
- Improve the current limit on the conversion rate $(R_{\mu e})$ by **four orders** of magnitude:

$$R_{\mu \to e} = \frac{\Gamma\left(\mu^{-} + N(Z, A) \to e^{-} + N(Z, A)\right)}{\Gamma\left(\mu^{-} + N(Z, A) \to \nu_{\mu} + N(Z - 1, A)\right)} < 6 \times 10^{-17} \text{ (90\% CL)}$$

- Mu2e will produce and stop 7×10^{18} muons on aluminum foils
 - ▶ Searching for ~105 MeV electrons originating from the stopping target
 - In SM, $\mu^- N \to e^- N$ is *practically* forbidden ($R_{\mu e} \sim 10^{-54}$)

Signal observation at Mu2e is unambiguous sign of New Physics

Mu2e-II

What is Mu2e-II?

- If approved, Mu2e-II will improve $R_{\mu e}$ sensitivity by \times 10 beyond Mu2e limits, extending λ_{NP} reach by \times 2
- Refurbish as much of Mu2e infrastructure as possible
- Upgrade Mu2e components to handle higher beam intensity

When?

- Few years after the end of Mu2e run
- Expected 5 years of physics run

Where?

 Mu2e will utilize 100kW proton beam from Proton Improvement Plan-II (PIP-II) at Fermilab

PIP-II status

- PIP-II will power DUNE and other experiments like Mu2e-II
- PIP-II project will be complete this decade
- The PIP-II scope enables the accelerator complex to reach design proton power on LBNF target, but
 - still leaves 98.8% of the beam for other users!

PIP-II @ Mu2e-II

- PIP-II designed to deliver $800 \text{ MeV } H^-$ beam to the Booster
 - ▶ Chopper system can produce an arbitrary pattern of filled or empty 162.5 MHz buckets
 - The maximum current $\sim 2mA$
- Mu2e-II will get a beam at upstream end of transfer line to Booster
 - Need to build a beamline to deliver beam to Muon Campus

Mu₂e-II beam formation

- Beam structure for Mu2e-II (100 kW):
 - \blacktriangleright Booster and Mu2e injection the intensity is limited to $1.4 \times 10^8~H^-$ per bucket
 - ▶ Booster requires $\sim 3~ms$ out of every 50~ms. The rest to Muon Campus
 - Mu2e-II needs a short spill followed by a gap to match the muon lifetime in the stopping target
- Mu2e-II needs only 10 buckets in each spill
 - \blacktriangleright beam pulse width is $\sim 62~ns$. Much narrower than at Mu2e
- Consider running Mu2e-II at even higher beam intensities

Higher beam power: Option 1

- We can consider Mu2e-II operations at beam power <1MW, assuming:</p>
 - 1MW production target exists
 - Mu2e-II gets the entire 162.5MHz beam from PIP-II
- A beam pulse of 100 bunches results in 620 ns wide 1MW beam
 - Will be followed by 700 ns blind window to suppress RPC background
 - Disadvantage: penalty of 30% muon stops

Higher beam power: Option 2

- PIP-II Accumulator Ring (PAR)
 - ▶ Transform a long pulse into few (4) short very intense bunches for one extraction
 - Compact version (C=120 m) would be a better option for Mu2e-II

- Beam power: >100 kW
- Frequency: 100Hz
- Circumference: 480 m
- Energy: 0.8 GeV upgradable to 1+ GeV

Higher beam power: Option 3

- A more ambitious option Fixed Field Alternating gradient (FFA) ring
 - Proposed by Y. Kuno, Y. Mori
- Provides pure muon beam to detector solenoid
 - An opportunity to explore high-Z stopping targets
- Cannot fill this ring directly from PIP-II
 - Needs a "compressor ring" to provide short, intense pulses at 100-1000 Hz.

Mu2e-II efforts

■ Mu2e-II is a natural extension of Mu2e

M.A. Cumm

- Feasibility studies started a decade ago at last Snowmass
 - Since then, we submitted several study papers and held multiple workshops
- We submitted 12 LOI on Mu2e-II subsystems for Snowmass 21

Feasibility Study for a Next-Generation Mu2e Experiment

https://arxiv.org/abs/1307.1168

K. Knoepfel³, V. Pronskikh³, R. Bernstein³, D.N. Brown⁵, R. Coleman³, C.E. Dukes⁻,

R. Ehrlich⁻

J. Mill

Expression of Interest for Evolution of the Mu2e Experiment⁺

https://arxiv.org/abs/1802.02599

2018

F. Abusalma²³, D. Ambrose²³, A. Artikov⁻, R. Bernstein⁶, G.C. Blazey²⁻, C. Bloise⁶, S. Boi³³, T. Bolton¹⁴,

J. Bono⁶, R. Bonventre¹⁶, D. Bowring⁶, D. Brown¹⁶, D. Brown²⁰, K. Byrum¹, M. Campbell²², J.-F. Caron¹²,

F. Cervelli³⁰, D.

March 17, 2022

Mu2e-II: Muon to electron conversion with PIP-II

Contributed paper for Snowmass
https://arxiv.org/abs/2203.07569

2022

K. Byrum, ¹ S. Corrodi, ¹ Y. Oksuzian, ¹ P. Winter, ¹ L. Xia, ¹ A. W. J. Edmonds, ² J. P. Miller, ² J. Mott, ³ W. J. Marciano, ⁴ R. Szafron, ⁴ R. Bonventre^b, ⁵ D. N. Brown^b, ⁵ Yu. G. Kolomensky^{ab}, ⁵ O. Ning^a, ⁵ V. Singh^a, ⁵ E. Prebys, ⁶ L. Borrel, ⁷ B. Echenard, ⁷ D. G. Hitlin, ⁷ C. Hu, ⁷ D. X. Lin, ⁷ S. Middleton, ⁷ F. C. Porter, ⁷ L. Zhang, ⁷ R.-Y. Zhu, ⁷ D. Ambrose, ⁸ K. Badgley, ⁸ R. H. Bernstein, ⁸ S. Boi, ⁸ B. C. K. Casey, ⁸ R. Culbertson, ⁸ A. Gaponenko, ⁸ H. D. Glass, ⁸ D. Glenzinski, ⁸

Backgrounds at Mu2e-II

- Mu2e-II assumes 5 years of running and 5.5×10^{19} stopped muons
- The total background needs to be kept <1 event</p>
 - ▶ This requires improvements to detector subsystems and beam structure
- Higher beam intensity and detector enhancements will result in an order of magnitude sensitivity improvement

Results	Mu2e	Mu2e-II (5-year)	Required improvement	
Backgrounds				
Decay In Orbit	0.144	0.263	Improved tracker resolution	
Cosmics	0.209	0.171	Improved veto and enhanced shielding	
Radiative Pion Capture	0.025	0.033	Improved extinction $< 10^{-11}$	
Radiative Muon Capture	< 0.004	< 0.02		
Antiprotons	0.040	0.000	Beam energy below \overline{p} threshold	
Others	< 0.004	< 0.017		
Total	0.41	0.47		
N(muon stops)	6.7×10^{18}	5.5×10^{19}		
SES	3.01×10^{-17}	3.25×10^{-18}		
$R_{\mu e}(90\% \text{ CL})$	6.01×10^{-17}	6.39×10^{-18}		
$R_{\mu e}$ (discovery)	1.89×10^{-16}	2.34×10^{-17}		

Beam production and transport

- Mu2e-II needs to tolerate x10 more beam power
- Mu2e target and super-conducting coils will not survive the beam power
 - Actively investigating alternative target station designs
 - Tungsten Heat Radiation Shield looks promising in reducing the rad damage on super-conducting coils

Production target

- Fermilab's LDRD project investigates production targets that survive Mu2e-II beam intensities: rotating, granular, conveyor concepts
- Simulation of: muon yield, thermal stress, radiation damage, residual activation, radiation loads
- In out Mu2e-II sensitivity study, we have considered conveyor type production target with carbon spheres
 - Early prototype has been fabricated

Beam production and transport

- Aiming the beam on target: 0.8 GeV (Mu2e-II) vs 8 GeV (Mu2e)
 - ▶ It also impacts the position of beam dump and extinction monitor position
- To hit the target Mu2e-II will optimize the following parameters
 - Vertical and horizontal incoming angles
 - Production target location
 - Production Solenoid magnetic field

Tracker

- Conversion electron momentum at Mu2e is reconstructed using straw tracker
- Expected Decay In Orbit (DIO) background at Mu2e: 0.144 events
 - DIO background would increase 10x at Mu2e-II, linear to the number of stopped muons
- Improve momentum resolution to suppress DIO by reducing straws thickness: $15 \mu m \rightarrow 8 \mu m$
 - In this study, we also reduced the momentum window $1.05~MeV \rightarrow 0.85MeV$ to further suppress DIO

	Mu2e	Mu2e-II
Wall thickness (µm)	18.1	8.2
Al thickness (µm)	0.1	0.2
Au thickness (µm)	0.02	0.0
Linear Density (g/m)	0.35	0.15
Pressure limits (atm)	0 - 5	0 - 3
Elastic Limit (gf)	1600	500

Tracker

- The momentum resolution is improved with thinner straws: $140 \rightarrow 100 \ keV$
- Fermilab's LDRD has been investigating challenges with: vacuum tightness, long term stability and large scale production
- Radiation levels (3 Mrad) exceeds the safety factor for electronics
 - ▶ Consider using application-specific integrated circuit electronics to handle the rad levels
- Investigate other detector alternatives:
 - Light gas vessel to ease straw leakage requirements
 - All wires construction and remove the straws
 - Wires separated by mylar walls

Calorimeter

- Mu2e uses CsI calorimeter for PID, seed tracking and provide a fast trigger
- Requirements: $\sigma_E/E < 10\% @ 100 MeV$ and $\sigma_t < 500 ps@ 100 MeV$
- Csl can't handle rad doses and crystals occupancy at Mu2e-II
 - $\sim Mrad, 10^{13} n_{1MeV-eq}/cm^2$
- BaF₂ is an excellent candidate: rad hard (< 100 Mrad) and has a fast UV component
 - Challenge: slow component can cause pileup
 - ▶ Suppress the slow scintillation component by doping BaF₂ with (Y)ttrium, (La)nthanum and (Ce)rium
 - Develop solar-blind photosensor: SiPMs with an external filter or UV-sensitive photocathodes
- This R&D is currently unfunded

Cosmic Ray Veto (CRV)

- CRV identifies cosmic ray muons that produce conversion-like backgrounds
- Technology: Four layers of extruded polystyrene scintillator counters with embedded wavelength shifting fibers, read out with SiPM photodetectors
- Expected live-time and hence cosmic ray background is >3x higher at Mu2e-II
 - Use alternative CRV design to enhance the detection efficiency
- Higher (>x3) rad doses: higher DAQ rates, dead-time, rad damage
 - Promising results with enhanced shielding: tungsten PS and boron doped heavy concrete
- Cosmic ray background sources undetectable by CRV:
 - ▶ Cosmic ray neutrons is a significant (~0.6) source, if not addressed with enhanced shielding
 - Muons entering through un-instrumented CRV region is small (<0.1), but challenging to suppress contribution

CRV design@Mu2e-II

- Enhanced CRV design using triangular-shaped counters
 - Improved efficiency due to reduced gaps
 - ▶ Better (1 mm) positional resolution reduces fake cosmic id, and hence dead-time
 - Lower DAQ rate from beam-induced detector noise
- CRV will be replaced due to aging
 - ▶ Enhance the light yield with thicker fiber, improved PDE SiPMs and potting fiber
- A prototype has been designed, fabricated and studies show promising results
- This R&D is currently unfunded

Most cosmic ray muons fall vertically

Mu2e

Mu2e-II

Mu2e-II

Stopping target

- We have considered stopping target designs alternative to Mu2e
 - However, we found that the current design with 34 Al foils is close to optimal
- If the signal is observed, will change stopping target to probe underlying New Physics operator
 - Titanium (Vanadium) and even Lithium stopping targets will be investigated
- Will adjust the micro-bunch length period to accommodate the muon lifetime of 329 ns on Ti vs 864 ns on Al

FIG. 1: Z dependence of $\mu \to e$ conversion rates for some example scenarios

Summary

- Mu2e-II will advance CLFV search in $\mu^- N \to e^- N$ channel
 - Order of magnitude improvement in R_{μe}
- Physics case of Mu2e-II is compelling, regardless of Mu2e's findings
 - ▶ If Mu2e sees signal, Mu2e-II will study underlying physics
 - ▶ If Mu2e doesn't see a signal, Mu2e-II will extend the sensitivity reach
- Mu2e-II has a support from muon physics community and Fermilab's PAC
- Broad R&D program has been identified
- If approved, Mu2e-II expects to start data taking in 2030 decade

Backup slides

2.4 MW: Rapid-Cycling Synchrotron (RCS) Option

