Track segment reconstruction in ST planes

M. Tenti - INFN-BO

Overview

- Goal: reconstruct track segment in ST YY plane:
- Position and direction (+ t0)
- Input:
- STT digits: tube position and tdc
- drift velocity, electric signal velocity along the wire and a 4 ns smearing are considered in straw tube signal digitization
- Assumption:
- The time ($t_{\text {bucket }}$) of the beam bucket of the interacting neutrino is known
- Or almost equivalently:
- The time ($t_{v t x}$ and $z_{v t x}$) and position of the neutrino interaction:

$$
t_{\text {bucket }}=t_{v t x}-\frac{z_{v t x}-z_{\text {target }}}{c}
$$

Clusters

- In each YY ST plane (whose z coordinate is $Z_{\text {plane }}$), adjacent hit straw tubes are grouped into clusters
- Additional not-hit tubes on both side are added to the cluster.
- A guess $\boldsymbol{t 0}$ guess $^{\text {is }}$ assigned to the ST plane according to the formula:
$t 0_{\text {guess }}=t_{\text {bucket }}+\frac{z_{\text {plane }}-z_{\text {target }}}{c}$

Model

- A track segment is parameterized as a straight line \boldsymbol{l} :
- Slope: m
- Intercept: q
- Given a line l and a tube with center $c_{i}=\left(z_{i}, y_{i}\right)$, the minimal distance is evaluated: $r_{i}(l)$
- Given a $t 0$, the expected $\boldsymbol{t d} \boldsymbol{c}$ of a tube is evaluated:

$$
t d c_{\mathrm{exp}}=t 0+\frac{r_{i}(l)}{v_{d r i f t}}
$$

- N.B. here electric signal velocity is not taken into account

Log-Likelihood

- For hit tubes:

$$
\left(t d c_{\text {exp }}-t d c_{\text {meas }}\right)^{2} / \sigma_{t}^{2}
$$

$$
\begin{gathered}
\sigma_{t}=4 n s \\
r_{\text {tube }}=25 \mathrm{~mm} \\
v_{d_{\text {rift }}}=0.05 \mathrm{~mm} / \mathrm{s}
\end{gathered}
$$

- For not hit tubes, if $r_{i}(l)<r_{\text {tube }}$:

$$
\left(\frac{r_{i}(l)}{v_{\text {drift }}}-\frac{r_{\text {tube }}}{v_{\text {drift }}}\right)^{2} / \sigma_{t}^{2}
$$

- Log-Likelihood:
sum over all tubes in the clusters (not hit tubes included)
- POI: $m, q, t 0$
- Minimize log-likelihood with TMinuit

Minimizer I/O

- t0: $t 0_{\text {guess }}$ from ST plane
- Determination of line ($\boldsymbol{m}, \boldsymbol{q}$) guess parameters:
- identify the most distant hit tubes in the cluster
- Use $t d c$ of these tubes and ST plane $t 0_{\text {guess }}$ to reconstruct their circles
- Slope and intercepts of the tangents of both circles are the guess parameters
- Log-likelihood are minimized for all the four guess line parameters
- Reco parameters: the one with the minimal log-likelihood

Golden clusters: ~78\%

- clusters due to single particle with RMS (angle direction) < 0.1 rad within the ST plane

Angle direction: cluster $\left(n_{\text {tube }}>2\right)$ [18\%]

Y coordinate: cluster ($n_{\text {tube }}>2$) [18\%]

$t 0:$ cluster $\left(n_{\text {tube }}>2\right)$
[18\%]

Angle direction: cluster $\left(n_{\text {tube }}==2\right)[82 \%]$

Y coordinate: cluster ($n_{\text {tube }}==2$) [82\%]

$t 0:$ cluster $\left(n_{t u b e}==2\right)$

[82\%]

Conclusions

- Algorithm for track segment reconstruction in ST plane
- Minimal assumption and no true MC info
- Based on the minimization of log-likelihood function
$-\mathrm{I} / \mathrm{O}: \mathrm{ST} t d c_{\text {meas }} \Rightarrow$ line $(l, m)+t 0$
- Performances with Golden Clusters (78\%)

82%	Cluster $\left(n_{\text {tubes }}==2\right)$	
Angle	RMS	300
direction (mrad)	σ	70
Y coordinate (mm)	RMS	0.8
$t 0(\mathrm{~ns})$	σ	0.16
RMS	2.5	

18%	Cluster $\left(n_{\text {tubes }}>2\right)$	
Angle direction (mrad)	RMS	340
Y coordinate	σ	34
$(\mathrm{~mm})$	σ	0.69
$t 0(\mathrm{~ns})$	RMS	0.19

