Track segment reconstruction in ST planes

M. Tenti – INFN-BO

Overview

- **Goal**: reconstruct track segment in ST YY plane:
 - Position and direction (+ t0)

• Input:

- STT digits: tube position and tdc
- drift velocity, electric signal velocity along the wire and a 4 ns smearing are considered in straw tube signal digitization

• Assumption:

- The time (t_{bucket}) of the beam bucket of the interacting neutrino is known
- Or almost equivalently:
 - The time (t_{vtx} and z_{vtx}) and position of the neutrino interaction:

$$t_{bucket} = t_{vtx} - \frac{z_{vtx} - z_{target}}{c}$$

- In each YY ST plane (whose z coordinate is z_{plane}), adjacent hit straw tubes are grouped into clusters
- Additional not-hit tubes on both side are added to the cluster.
- A **guess** $t0_{guess}$ is assigned to the ST plane according to the formula:

$$t0_{guess} = t_{bucket} + \frac{z_{plane} - z_{target}}{c}$$

Model

- A track segment is parameterized as a **straight line** *l*:
 - Slope: *m*
 - Intercept: q
- Given a line *l* and a tube with center $c_i = (z_i, y_i)$, the minimal distance is evaluated: $r_i(l)$
- Given a t0, the **expected** tdc of a tube is evaluated: $tdc_{exp} = t0 + \frac{r_i(l)}{v_{drift}}$
- N.B. here electric signal velocity is not taken into account

Log-Likelihood

• For hit tubes:

$$\left(tdc_{exp}-tdc_{meas}\right)^2/\sigma_t^2$$

 $\sigma_t = 4 ns$ $r_{tube} = 25 mm$ $v_{drift} = 0.05 mm/s$

- For **not hit tubes**, if $r_i(l) < r_{tube}$: $\left(\frac{r_i(l)}{v_{drift}} - \frac{r_{tube}}{v_{drift}}\right)^2 / \sigma_t^2$
- Log-Likelihood:

sum over all tubes in the clusters (not hit tubes included)

- **POI**: *m*, *q*, *t*0
- Minimize log-likelihood with TMinuit

Minimizer I/O

- *t***0**: *t***0**_{*guess*} from ST plane
- Determination of line (m, q) guess parameters:
 - identify the most distant hit tubes in the cluster
 - Use tdc of these tubes and ST plane $t0_{guess}$ to reconstruct their circles
 - Slope and intercepts of the tangents of both circles are the guess parameters
- Log-likelihood are minimized for all the four guess line parameters
- Reco parameters: the one with the **minimal log-likelihood**

Golden clusters: ~78%

 clusters due to single particle with RMS(angle direction) < 0.1 rad within the ST plane

Angle direction: $cluster(n_{tube} > 2)$ [18%]

Y coordinate: $cluster(n_{tube} > 2)$ [18%]

t0: $cluster(n_{tube} > 2)$

[18%]

Angle direction: $cluster(n_{tube} == 2)[82\%]$

Y coordinate: $cluster(n_{tube} == 2)$ [82%]

t0: $cluster(n_{tube} == 2)$ [82%]

Conclusions

- Algorithm for track segment reconstruction in ST plane
- Minimal assumption and no true MC info
- Based on the minimization of log-likelihood function
- I/O: ST $tdc_{meas} \Rightarrow \text{line} (l,m) + t0$
- Performances with Golden Clusters (78%)

82%	$Cluster(n_{tubes} = 2)$			18%	$Cluster(n_{tubes} > 2)$	
Angle direction (mrad)	RMS	300		Angle direction (mrad)	RMS	340
	σ	70			σ	34
Y coordinate (mm)	RMS	0.8		Y coordinate (mm)	RMS	0.69
	σ	0.16			σ	0.19
<i>t</i> 0 (ns)	RMS	2.5		<i>t</i> 0 (ns)	RMS	3.2