MiniBooNE error analysis

Chris Polly

March 2, 2012

‡ Fermilab

Clear up some points from last meeting

→ MiniBooNE neutrino mode running was systematic limited

-	•		
Process	200 - 300	300-475	475 - 1250
$ u_{\mu} \text{ CCQE}$	9.0	17.4	11.7
$ u_\mu e ightarrow u_\mu e$	6.1	4.3	6.4
NC π^0	103.5	77.8	71.2
NC $\Delta \rightarrow N\gamma$	19.5	47.5	19.4
External Events	11.5	12.3	11.5
Other Events	18.4	7.3	16.8
ν_e from μ Decay	13.6	44.5	153.5
$ u_e \text{ from } K^+ \text{ Decay}$	3.6	13.8	81.9
$ u_e \text{ from } K_L^0 \text{ Decay} $	1.6	3.4	13.5
Total Background	186.8 ± 26.0	228.3 ± 24.5	385.9 ± 35.7

http://arXiv.org/abs/0812.2243

- → Systematics will be the ultimate limitation (single detector)
- → Still interesting and necessary to understand how signal/ background predictions has evolved, i.e. flux & xsec

Confusion last week about signal prediction

- → Part of this was my confusion of "2 detector"
- → Used to thinking about 2 detector as adding a near detector not a 2nd far
- → Not going to worry about this since we are just comparing to MiniBooNE's single detector result

Still just tracing down this...

90% CL Sensitivity (Final 2008 υ Analysis)

Fermilab W&C Aug 2008 (C. Polly)...plot shows 90% CL sensitivity for the initial neutrino analysis (red) and with 0.83e20 POT added and some systematic updates (blue)

Single detector signal predictions

→ Step 1: Reproduce these predictions
 → Step 2: Substitute modern predictions for flux, xsec, efficiency

Single detector signal predictions

→ Step 0: Master Data Thief!

🛟 Fermilab

Compare expected signal rates, then and now

Points in phase space have not been our standards in a long time, but Zarko was able to quickly run the expected event rate

Expected signal (200MeV-3000MeV)

	Proposal	Current
РОТ	5e20	6.46e20
2 eV^2, 2x10-3 sin^2(2theta)	826	149
0.3 eV^2, 3x10-2 sin^2(2theta)	1025	272

More proposal estimates...

Process	Number of Events	
Oscillations with $\Delta m^2 = 0.2 \text{ eV}^2$ and $\sin^2 2\theta = 0.04$	† 675	
Oscillations with $\Delta m^2 = 0.4 \text{ eV}^2$ and $\sin^2 2\theta = 0.02$	1200	
μ^- Misidentification	600	
π^0 Misidentification	600	
Intrinsic ν_e Background	1800	

