Neutrino beam
 from a racetrack-FFAG muon decay ring for the VLENF

Akira SATO
Department of Physics, Osaka University 2012/02/28
VLENF Meeting by Ready Talk

Outline

- Racetrack-FFAG as a muon decay ring (designed by JB. Lagrange)
- Lattice design
- Tracking results with JB's original tracking code
- Tracking with g4beamline
- Step size effects on the tracking
- Comparison with the JB's tracking results
- Neutrino production in the ring with g4beamline
- $\mathrm{E}_{\mu}=2.0 \mathrm{GeV} \pm 0 \%$
- $\mathrm{E}_{\mu}=2.0 \mathrm{GeV} \pm 16 \%$
- Conclusions

Muon decay Racetrack-FFAG ring for VLENF ($\mathrm{E} \mu=2 \mathrm{GeV}$)
designed by JB. Lagrange (KURRI)

$J B ' s$ Lattice for $E_{\mu}=2 G e V, \Delta p / p_{0}= \pm 16 \%$

Advanced Scaling FFAG Muon decay ring with long straight sections.

from JB. Lagrange, acc-kurri-1119-01-2011

JB's Lattice for $\mathrm{E}_{\mu}=2 \mathrm{GeV}$: Straight Section

Cell type	DFD triplet	
Number of cells in the ring		36
Cell length		6 m
x_{0}		16 m
m-value	$3.9 \mathrm{~m}^{-1}$	
Packing factor	0.07	
Collimators $\left(x_{\text {min }}, x_{\text {max }}, z_{\text {max }}\right)$		$(15.5 \mathrm{~m}, 16.5 \mathrm{~m}, 0.3 \mathrm{~m})$
Periodic cell dispersion	0.26 m	
Horizontal phase advance		13.0 deg.
Vertical phase advance	Magnet center	15.2 deg .
D_{1} magnet parameters	Magnet length	0.2 m
	Fringe field fall off	Linear (Length: 0.04 m$)$
	$B_{0}\left(x_{0}=16 \mathrm{~m}\right)$	0.712225 T
F magnet parameters	Magnet center	3 m
	Magnet length	0.2 m
	Fringe field fall off	Linear (Length: 0.04 m$)$
	$B_{0}\left(x_{0}=16 \mathrm{~m}\right)$	-0.639761 T
D_{2} magnet parameters	Magnet center	
	Magnet length	5.8 m
	Fringe field fall off	Linear (Length: 0.04 m$)$
	$B_{0}\left(x_{0}=16 \mathrm{~m}\right)$	0.712225 T

Table 1: Parameters of the straight scaling FFAG cell.

$$
B_{s z}=B_{0 s z} e^{m\left(x-x_{0}\right)} \mathcal{F}, \quad B_{0 s z}=B_{s z}\left(x_{0}\right)
$$

JB's Lattice for $\mathrm{E}_{\mu}=2 \mathrm{GeV}$: Circular Section

Cell type		FDF triplet
Number of cells in the ring		16
Cell opening angle	22.5 deg	
r_{0}		16 m
k-value	10.85	
Packing factor	0.9	
Collimators $\left(r_{\text {min }}, r_{\text {max }}, z_{\max }\right)$		$(14.5 \mathrm{~m}, 17.5 \mathrm{~m}, 0.3 \mathrm{~m})$
Periodic cell dispersion		$1.35 \mathrm{~m}($ at 2 GeV$)$
Horizontal phase advance		$90 . \mathrm{deg}$.
Vertical phase advance		22.5 deg.
F_{1} magnet parameters	Magnet center	4.1 deg
	Magnet length	6.8 deg
	Fringe field fall off	Linear $($ Length: 0.1 deg$)$
	$B_{0}\left(r_{0}=16 \mathrm{~m}\right)$	-1.430895 T
D magnet parameters	Magnet center	11.25 deg
	Magnet length	6.0 deg
	Fringe field fall off	Linear $($ Length: 0.1 deg$)$
	$B_{0}\left(r_{0}=16 \mathrm{~m}\right)$	1.866669 T
$\mathrm{~F}_{2}$ magnet parameters	Magnet center	
	Magnet length	18.4 deg
	Fringe field fall off	Linear (Length: 0.1 deg)
	$B_{0}\left(r_{0}=16 \mathrm{~m}\right)$	-1.430895 T

$$
B_{c z}=B_{0 c z}\left(\frac{r}{r_{0}}\right)^{k} \mathcal{F}, \quad B_{0 c z}=B_{c z}\left(r_{0}\right)
$$

Horizontal (plain red) and vertical (dotted purple) periodic betafunctions

JB's Lattice for $\mathrm{E}_{\mu}=2 \mathrm{GeV}$: Beta and Dispersion

JB's Lattice for $\mathrm{E}_{\mu}=2 \mathrm{GeV}$: Beta Function

JB's Lattice for $\mathrm{E}_{\mu}=2 \mathrm{GeV}$: Tune Diagram

Figure 7: Tune diagram for muons from $p_{\min }$ to $p_{\max }(\pm 16 \%$ in momentum around $2.1 \mathrm{GeV} / \mathrm{c}$).
Integer (red), half-integer (green), third integer (blue) and fourth integer (purple) normal resonances are plotted. Structural resonances are in bøி.m JB. Lagrange, acc-kurri-1119-01-2011

JB's Lattice for $E_{\mu}=2 \mathrm{GeV}$: Acceptance

Max amplitude 100 turns for p_{0}

$\pm 0.075 \mathrm{~m}, \pm 0.005 \mathrm{rad}$

Tracking of JB's 2GeV Ring by g4beamline

red: μ^{-}blue: e^{-}white: v_{e} magenta:anti- v_{μ}

Step size effects on the tracking

maxStep $=100 \mathrm{~mm}$ (default) vs 1 mm

Horizontal

Vertical

Comparison with JB's tracking results

JB's original tracking code

Comparison b/w JB's results

- The tracking results of g4beamline are in very good agreement with the JB's result.
- I use maxstep=5mm in the following tracking.
- note: The grid size of magnetic field maps must be also enough small to get reasonable accuracy.

Then, I turned the muon decay switch on to product neutrinos.

Neutrino production with JB's 2GeV Ring by g4beamline

red: μ^{-}blue: e^{-}white: v_{e} magenta:anti- v_{μ}

Initial beam emittance of the muon

- Ellipse beam which is randomly generated on (X,Xp), (Y,Yp) with uniform density. (by g4bl command: beam ellipse). I tried two cases:
- $\mathrm{E}=2.0 \mathrm{GeV}$
- $\Delta X: 0.075 \mathrm{~m}, \quad \Delta X p: 0.0050 \mathrm{rad}$
- $\Delta \mathrm{Y}: 0.090 \mathrm{~m}, \quad \Delta \mathrm{Yp}: 0.0035 \mathrm{rad}$
- $\Delta \mathrm{E}: 0 \mathrm{GeV}$, $\quad \Delta \mathrm{t}:$ Ons
- $\mathrm{E}=2.0 \mathrm{GeV} \pm 16 \%$
- $\Delta X: 0.125 \mathrm{~m}, \Delta \mathrm{Xp}: 0.0050 \mathrm{rad}$
- $\Delta \mathrm{Y}: 0.090 \mathrm{~m}, \Delta \mathrm{Yp}: 0.0035 \mathrm{rad}$

Beam size for $\mathrm{E}_{\mu}=2 \mathrm{GeV} \pm 16 \%$ is decided from the dispersion, but no dispersion matching was made in this simulation.

Neutrino beam at the monitor : $\mathrm{E}_{\boldsymbol{\mu}}=\mathbf{2 . 0 G e V} \pm \mathbf{0 \%}$

Neutrino beam at the monitor : $\mathbf{E}_{\boldsymbol{\mu}}=\mathbf{2 . 0 G e V} \pm \mathbf{0 \%}$

Neutrino beam at the monitor : $\mathrm{E}_{\boldsymbol{\mu}}=\mathbf{2 . 0} \mathbf{G e V} \pm \mathbf{1 6 \%}$

Neutrino production from muon decay in flight

$\mathrm{E}_{\mu}=2.0 \mathrm{GeV}$

* Energy conservation * Momentum conservation
* Lorenz boost

Compare this with the tracking results.

Beam gradient $X, p_{x} / p_{z}:$ run412: $E_{\mu}=2.0 \mathrm{GeV} \pm 16 \%$

Beam gradient $\mathrm{Y}, \mathrm{p}_{y} / \mathrm{p}_{z}:$ run412: $\mathrm{E}_{\mu}=2.0 \mathrm{GeV} \pm 16 \%$

Effect of serpentine orbit at the straight section is negligible in the gradient of neutrino beam, as expected.

Conclusions

- An advanced scaling Racetrack-FFAG ring has been designed by JB. Lagrange as a 2 GeV muon decay ring for the VLENF.
- Energy acceptance is $2 \mathrm{GeV} \pm 16 \%$,
- $L_{s}=108 m, L_{A}=100 m$
- The first g4beamline tracking in the Racetrack-FFAG ring has been performed. With maxStep $=5 \mathrm{~mm}$ and fine grid magnetic field maps, the tracking results show very good agreement with results from JB's tracking code.
- Neutrino production has been also tried with g4beamline. Profiles of the neutrino beam at $L_{D}=26 \mathrm{~m}$ was shown. They have very good performance.
- This Racetrack-FFAG ring has enough space to handle the injection of muon beam. Optics studies are needed for that.

