Updated Vertex Selection BDT for Atmospheric Neutrinos

Andy Chappell

14/02/2022

FD Sim/Reco Meeting

Beam assumption

- v03_26_03 and earlier of LArContent assumes a beam
 - Negatively impacts atmospheric reconstruction for "backward going" interactions
- <u>Updated LArContent</u> to allow beam deweight to be optional
 - For technical reasons, you can't just drop the variable, but update avoids failure when running in non-beam mode
- Running over atmospherics sample
 NNBarAtm_hA_BR_dune10kt_1x2x6_RITM1251140_reco
- Region and Vertex BDTs have been retrained

Example Features

Region finding BDT

- Pandora's vertex selection BDT takes a two-tiered approach
- Vertices are selected based on their scores in coarse-grained regional comparisons and by fine-grained comparisons within local regions
- We'll look first at the region finding BDT and then the fine tuning BDT

Removing highly correlated features (> 0.8)

KS Tests

- Tested various depth/estimator count combinations for BDT
- Checked KS test scores compatible with training and validation sets drawn from same distribution

Training Set Size

- Test scores stable across a broad range of sample sizes
- Region BDT performant even for quite small samples
 - ~36K training examples equivalent to about 4K events

Feature Importance

ROC Curves

Fine-tuning BDT

Vertex Correlation Matrix

Removing highly correlated features (> 0.8)

0.75

0.50

-0.25

0.00

-0.25

-0.50

-0.75

-1.00

KS Tests

- Tested various depth/estimator count combinations for BDT
- Checked KS test scores compatible with training and validation sets drawn from same distribution

Training Set Size

- Need many more training examples for fine tuning
- Performance stabilizes 80K-120K examples
 - About 21-32K events

Feature Importance

ROC Curves

Event comparisons

Better performance for backward going events

Event comparisons

Remaining/new errors are often ambiguous cases

Event comparisons

Better performance for backward going events

WARWICK

Performance comparisons

- Accelerator (baseline) vertexing dr68: 26.1 cm
- Atmospheric (feature) vertexing dr68: 5.3 cm

Summary

- Removing the beam assumption notably improves vertexing performance
- Though suppressed, some large errors are still present, so further gains likely possible
- Updated algorithm and XML to be available in the near-term Pandora release
- Ongoing development and next steps
 - Look for further algorithmic improvements to vertexing
 - Neural network-based vertexing in development