

Strategic Approach to Broaden the Use of Superconductivity in Society and the Potential Impact on a Cleaner, Healthier and Sustainable Future

Ziad Melhem Oxford Quantum Solutions Ltd, Oxford, UK

2022 All Engineers Retreat at Fermilab (FNAL), USA 23rd Feb 2022

- 1. The challenge
- 2. Overview
- 3. Superconducting materials
- 4. Market analysis
- 5. Opportunities
- 6. Concluding remarks

The challenge

Global Environmental Challenges

Europe 15th July 2021

Greenland 2021 - melting 6 X times faster than 1990

Antarctica Icebergs melting fast!

Key takeaway Need new innovations!.... Superconducting materials and technologies can and will help

UN Sustainable Development Goals – 17 in total

23 February 2022

ziad.melhem@oxqsol.com

Superconducting Technologies and the SDG goals

Estimated Global Electricity Generation Mix

New Energy Outlook 2020 report by Bloomberg (2020)

• Potential addressable market for Fusion

Global change on electricity demand vs generation 2015-2022

Global changes in electricity demand (TWh), 2015-2022

Global changes in electricity generation (TWh), 2015-2022

ziad.melhem@oxqsol.com

Overview

From discovery by accident to commercialisation

Heike Kamerlingh Onnes (1853-1926) "Door meten tot weten" ("Through measurement to knowledge")

1908 Kamerlingh Onnes **Liquefies Helium**

Global SC magnets delivered:

• >40,000 MRI (4 K)

Figure 2. A terse entry for 8 Apri 1911 in Heike Kamerlingh Onnes notebook 56 records the first obervation of superconductivity. The iahliahted Dutch sentence Kwik noeg nul means "Mercury['s i sistance] practically zero [at 3 K]." The very next sentence, Herhaal net could means "repeated with old." (Courtesy of the Boerhaav useum.)

>20,000 magnets (Research & NMR Magnets) (2-4K)

Total estimated SC market ~ £ 8 Billion (2021)

8 April 1911 "The Resistance of Mercury at helium temperatures" 0.034 W at 13.9 K, 0.0013 W at 4.3K and less than 0.0001 W at 3K

Oct 1911 (Reported in Nov 1911) "On the sudden change in the rate at which the resistance of mercury disappears"

Humble beginnings ... Oxford Instruments

in commercial Superconducting magnet technology – 4 Tesla

Courtesy of Oxford Instruments

23 February 2022

ziad.melhem@oxgsol.com

Page 10

> 25 Nobel Prizes - SC, Quantum & Cryogenics

Innovation in Superconducting applications

23/02/2022

ziad.melhem@oxqsol.com

Page 12

Superconducting materials

From nanomaterials to SC applications

How to make performing 10 A - multi-kA conductors that guarantee the magnet not to quench or degrade ?

- Need to understand and control the entire production chain
 - An underdeveloped area of research, but essential to avoid surprises and degraded magnet performance
 - Striking examples exist of missing understanding putting large projects at risk or make them expensive

Key takeaway

Huge progress in translating new innovation in smart materials into large and advanced applications

Superconducting materials

Superconducting materials – Performance and cost

YBa₂Cu₃O₇

(ReBCO)

92

>40 @4.2K

20 @ 20 K

8 @ 65 K

Ceramic oxide

Thin film

coated

conductor

Prototype-R&D

Bi₂Sr₂Ca₂C

 $u_{3}O_{10}$

(Bi-2223)

110

>40 @4.2K

8 @ 20 K

4 @65 K

Ceramic

oxide

Multi-

filamentar

y flat tape

Prototype-

R&D

Bi₂Sr₂CaCu

₂0₈

(Bi-2212)

95K

>40 @4.2K

8@20K

4@65K

Ceramic

oxide

Multi-

filamentary

Rnd wire,

flat tape

Prototype-

R&D

Major and Global Helium shortage (April 2020) ... Need new thinking on cryogenics

High Temperature Superconductors (HTS) will lead to new market opportunities and enable new high field applications

Superconducting Technology Landscape 45 Ultra High Field >23 T 40 **Condensed Matter Physics** 35 MgB₂ **Dark Matter** Moderate Field < 40K **NMR** 30 **Research & Medical lb**₂Sn NMR & MRI rreversability Field (K) 10 12 05 15 10 Low Field > 40K **High Energy Physics Fusion Research & Medical** No LF MF < 23 T (20 K) Bi-2223 NMR & MRI **Condensed Matter Physics Power Transport Materials** Power Industrial Industrial **Transport** 5 0 10 20 30 40 50 60 70 80 90 0

Temperature (K)

HF systems >25 T

- MF systems operating @20-40K
- LF systems operating @ 40K
- wide bore systems
- compact magnets
- Simplified cryogenics > 4K
- Reduced footprint
- Reduced overall cost

• 23 February 2022

ziad.melhem@oxqsol.com

Market analysis

- Fusion
- Electric planes
- SC magnetic storage
- Renewables
- Compact and portable HF magnet systems for Physical and Life Sciences
- SC quantum computing Fast growing application
- Superconducting Electronics
- Medical diagnostics and therapy
- Industrial and Transport

> \$10 Billion by 2030

Opportunities

Nanotechnology Applications

Opportunities ...

Superconducting magnets for nanotechnology and materials research

SC magnet develop0ment timeline and high field

Opportunities

Quantum applications

Quantum Computing – Superconducting Qubits > 6 B \$ commitment over the last 2 years

- Commercial Leaders: D-Wave, IBM, Google, Rigetti, Quantum Circuits Inc, Intel
- Academic Leaders: UCSB, UC Berkley, Yale, ETH Zurich, TU Delft, MIT

Google unveiled the world's largest quantum computer processor to date

Dubbed Bristlecone, it's a 72-qubit gatebased superconducting system

 Coogle Research Blog

IBM demonstrated a 50 Qubit Quantum Computer

• Already providing users with 20 Qubit comp

Courtesy of IBM

The D-Wave 2X system implements

<complex-block>

With 1000 qubits, the D-Wave 2X system can search through $2\,^{1000}\,\text{possible solutions}$

Key takeaway – SC qubits leading the way towards Quantum computers and embraced by big industrials

Quantum metrology –

smart science to industrial applications

Quantum sensing - Magnetoencephalography (MEG)

Key takeaway – SC electronic devices enabling a new class of advanced tools for health care with a decent market in 5 years from now

Q-LAN for Quantum Communications & Computing Scale up

- New innovations required Q Computing/Communications/Sensing
 - Quantum local area network (Q-LAN) Cryogenic link between two dilution refrige \int
 - Enabling clustering of multiple fridges for large number of Qubits

Key takeaway – SC cables/wiring will enable advanced communications and transmission solution for advanced quantum solutions

Oxford Quantum Solution

Opportunities

Health care – MRI, NMR , Proton Therapy

MRI Magnets Development - Health Sector

ziad.melhem@oxqsol.com

NIMS-Jastec LTS+HTS – NbTi, Nb3Sn & ReBCO Oxford Instruments Only LTS – NbTi, Nb3Sn

Bruker Biospin LTS +HTS – NbTi, Nb3Sn, ReBco

Key takeaway

New class of NMR devices impacting research and drug discovery for many difficult conditions and illness. E.g. Cancer, Dementia, Brain strokes, Heart conditions, etc

ziad.melhem@oxqsol.com

Medical Therapy

Commercial accelerators for proton therapy: cyclotrons (by IBA and Varian/Accel) and synchrotrons (by Mitsubishi and Hitachi).

Key takeaway

- Will provide step change in medical care and improve quality of life for so many
- Potential to be very large commercial market with high field and compact devices

Opportunities

Future High Energy Physics colliders with SC – EU, China, Japan

FCC – SC for future colliders – CERN (>20B Euro) – Courtesy of CERN

Super Proton Proton Collider (SPPC) - China

Baseline design

- Tunnel circumference: 100 km
- Dipole magnet field: 12 T,
 - iron-based HTS technology (IBS)
 - Center of Mass energy: >70 TeV
- upgrade phase
 - Dipole magnet field: 20...24T, IBS technology
 - Center of Mass energy: >125 TeV
- Development of high-field superconducting magnet technology
 - Starting to develop required HTS magnet technology before applicable iron-based wire is available
 - ReBCO & Bi-2212 and LTS wires be used for model magnet studies and as an option for SppC:
 - stress management, quench protection, field quality control and fabrication methods

Using Iron Based Superconductors (IBS)

- Can operate at elevated temperatures
- 100 m of IBS conductor has been tested
- Cost ~ \$5B

Key takeaway

- Verification of IBS for High energy physics large scale projects will lead new commercial SC material with the potential
 - Cheap
 - High performance

Opportunities

Fusion

Nuclear Fusion – ITER using LTS

- •ITER strand new generation of LTS superconductors for energy applications
- 15B Euro development cost
- •>20 yr development programme (10yr to build)
- •2027! date for 1st Plasma
- •74,000Km of superconducting wires

(40,000 Km to circle the earth! Almost twice around the earth!)

High field Superconducting magnets to contain plasma- Sun conditions 10 Million Degrees

Power density: Fusion vs Renewables

Fusion

CFS ARC: 200 MWe Tokamak Firm 90% Capacity

https://w3.windfair.net/wind-energy/news/31919-he-haliade-xnacelle-ore-catapult-test-site-uk-offshore-wind-turbine-large

Future fusion devices using HTS – Led by private funds

Source -Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Cambridge, MA USA

23/02/2022

Opportunities

Power and Energy with HTS

Power applications - Technology Readiness Level (TRL)

SC wind power generation

- HTS Conductor
- All roads capability
- Low cost design
- Low weight design
- Mainstream markets
 - 3.6 MW for onshore and off-shore.
- Cryostat system integration
- Cryogen free for cooling

9 Partners from 5 countries wo	rking for a common goal	
ENVISION		JE JEUMO
	THEVA	SHI 2 Cryogenics Grou
🜌 Fraunhofer	UNIVERSITY OF TWENTE.	

Source - Prof. M Noe- HTS Power Applications - _CERN <u>Microsoft PowerPoint - noe-hts</u> power applications-2013-04-28 [Kompatibilitätsmodus] (cern.ch)

Key takeaway

- More MW power per footprint
 - reduced in volume by 25%
 - Reduced weight by 40%
- HTS current density > 100 x Cu leading to hF and low energy loss
- Retrofitting existing infrastructure with enhanced generation

23/02/2022

ziad.melhem@oxqsol.com

DNVG

Energy storage and power transmission and distribution

2014 **Ampacity** ReBCO tape FCL 12kV 2.3kA protecting superconducting cable in Essen city grid

10 MVA/1 s SMES at Kameyama field test, in Japan. S. Nagaya et al., "The state of the art of the development of SMES for bridging instantaneous voltage dips in Japan," Cryogenics (Guildf)., vol. 52, no. 12, pp. 708–712, Dec. 2012.

Field test of 500m long HTS cable (Furukawa Electric CRIEPI (Central Research Institute of Electric Power Industry) & Super-GM (Engineering Research Association for Superconductive Generation Equipment & Materials) 2005

Key takeaway – HTS Impact on Power Applications:

- New technology
- Improved energy efficiency
- Higher power density
- Higher power quality
- Essential for decarbonisation and zero emission targets

Discharging time versus power for various energy-storing devices

www.electricitystorage.org

23 February 2022

Superconducting Magnetic Energy Storage

Superconducting Cables (>20 completed)

Field test of 500m long HTS cable (Furukawa Electric CRIEPI (Central Research Institute of Electric Power Industry) & Super-GM (Engineering Research Association for Superconductive Generation Equipment and Materials) 2005

Cable at Holbrook, Long Island USA, operational 2009

Note the elevation and the corners!

ziad.melhem@oxqsol.com

HTS transmission cables > 70

Project	Long Island 2		HYDRA Phase 21	HYDRA Phase 3 ²	U	S Navy DC Cable		December 2015.	odf
Location	Long Island, NY, USA	Yon	kers, NY, USA			ida State versity			
Site	Holbrook Substation	Sui	nite Hill-Rockview		Cente	er for Advanced			
Status Abandoned ³		Ur	Project	ble Projects in Europe AmpaCity BEST PATHS		'HS	St. Petersburg		
Developer	AMSC	A	Location	Essen, Germany		Germany and Switze		St. Petersburg, Russia	
Utility/Host	LIPA	C	Site	Dellbruegge and Herkules		Nexans, Hannover and CERN		Tsentralnaya and RP-9 Substations	
In-Grid Start Date	NA	20		Substations					
End Date	LIPA originally planned to	N	Status	Operational Table 5: HTS Cable Projects in Japan and South Korea					
operate system indefinitely		ter	Developer	Nexans, RWE Deutschland, an		Project		Asahi	JeJu Island DC
Type (AC or DC)	AC	AC		KIT ¹	_	Location	Y	okohama, Japan	lelu Island, South Korea
Phases	3	3	Utility/Host	RWE Deutschland	_	Site		sahi Substation	GumAk-Hanlim Substations
Geometry	Coaxial	Tri	Start Date	March 2014 ⁴	— İ			Completed initial test 1	Operational
Voltage	138 kV	13	End Date	~ 2016 5	— ł			NETI/NEDO/Sumitomo ²	KEPCO/LS Cable/KERI
Rated Current 2400 A _{mm} (Cable will operate @ 800 to 900 A _{mm})		4((9	Туре	AC				EPCO	KEPCO
			Phases	3	_	Start Date		Det. 30, 2012 ³	October 2014
Length	600 m	17	Geometry	Tri-axial	— ł			ec. 2013 (see note on Status)	2016
Fault Current	51 kA _{ms} for 12 cycles 4(Voltage	10 kV	— ł		A		DC	
	(~140 kA _{peak} asymmetrical)		Rated Current	2.3 kA (40 MVA)		Туре	A 3	C	
Dielectric Design	Cold dielectric	C	Length	1 km	_	110363			
Dielectric Material	LPP	C	Fault Current	20 kA (50 kA peak)	_			iad	Coaxial DC
HTS Material	YBCO fault current limiting	YE	Dielectric Design	Cold dielectric	_	renage		6 kV	± 80 kV DC
HTS Conductor AMSC Supplier/Fabricator		A	Dielectric Material	LPP	_	Rated Current		kA (200 MVA)	3125 A DC
AC Loss	Not available	N	HTS Material	BSCCO [®]	_			40 m	500 m
Cable Fabrication	Nexans	U	HTS Conductor Supplier/Fabricator	Sumitomo		Fault Current		1.5 kA _{ms} for 2 sec ⁴	Not available
Refrigeration	6 kW @ 65 K (advanced	6.	AC Loss	1 W/m ¹⁰	—	Dielectric Design	C	old dielectric	Cold dielectric
	system proposed)	4-	Cable Fabrication	Nexans	— [Dielectric Material	LF	P	LPP
		(D	Refrigeration	4 kW @ 67 K. Open bath I		HTS Material	В	SCCO	YBCO
			Kenngeration	(Messer) ¹¹	<u></u>	HTS Conductor Supplier/Fabricator	S	umitomo	AMSC
						AC Loss	0	.9 W/m/phase @ 2 kA (50 Hz), 77 K	Not applicable
						Cable Fabrication	S	umitomo	LS Cable
						Refrigeration	6	kW @ 77 K. Closed-loop Stirling cycle	e, Not available

3002007192 Strategic Intelligence Update Superconductivity for Power Delivery Applications

- > 20 projects in the US
- >20 Projects in the EU
- >20 Projects in South Korea
- > 10 Projects in China

six machines (Mayekawa)⁵

Opportunities

- Industrials with SC
- Non-destructive testing
- Inductive heaters
- Magnetic separation
- Crystal growth
- Quality control

Industrial Magnets Magnetic separation - Carpco

- High gradient magnetic separation (HGMS)
- Primarily for kaolin processing
 - removing weakly magnetic impurities to improve whiteness (and therefore economic value)
- **5 T** magnets, 360 mm to 1000 mm bore

operate at the mining source
Amazon rainforest, Brazil
Queensland, Australia
Cornwall, UK

Key takeaway

• Superconductors can operate in industrial and harsh environments

Opportunities

Transport with HTS

- MAGLEV
- Electric planes
- Electric ships

MAGLEV with SC – Serious in Japan and China

Japan - 18 May 2011

- Japanese Government authorizes Central Japan Railway Co to proceed with high speed Maglev link from Tokyo to Osaka by 2045
- speed 580 kph

Japan - June 2015

Chuo Shinkansen Maglev train Achieved
 603 Kph (375 miles/hr) in Jun 2015

- 1st phase complete by 2027 Tokyo to Nagoya (40 min for 270 Km)
- 2nd Phase by 2045 Tokyo to Osaka (67 min hr for 500 Km)
- Total cost ~ \$55B
- Using NbTi wire @4K

China - 2030

- Plans for two maglev lines to connect the south China province (Guangdong) with Beijing & Shanghai.
- The new maglev lines will cut travel time
 - Guangzhou to Shanghai to two and a half hours.
 - Guangzhou to Beijing will require just over three hours, halving current travel time by high-speed rail,

Key takeaway – Superconductors will have a significant impact on land transport and environment

Motivation for sustainable air transport Global increase in air travel and greenhouse gas emissions

Global Passengers (billion, segment basis)

Environmental impact (Co₂): forecast by mode of deployment

Key takeaway – Superconductors will have a significant impact on environment and decarbonisation

23 February 2022

Electric planes with SC – Selected examples

Fully Turbo-electric plane: NASA N3-X

- fuel burn reduction 70%, same range, speed, airport infrastructure.
- Technology: Hybrid Wing Body, Fully distributed 50MW, Superconducting, 7500V, power system

- Boeing SUGAR Freeze: fuel burn reduction 56% for 900 mile mission, utilizes a truss-braced wing combined with a boundary-layer ingesting fan in an aft tail cone to maximize aerodynamic efficiency.
- The aft fan is powered by a **solid oxide fuel cell topping cycle** and driven by a **superconducting motor with a cryogenic power management system**

Empirical Systems Aerospace ECO–150R

- Matching and significantly exceeding current aircraft fuel burn.
- Technology considered ranges from superconducting electrical machines cooled with liquid hydrogen to conventional machines at various technology levels.

Progress with Electric planes

- Right building blocks are in place to have a viable large-plane EAP configuration tested by 2025
- Entry into service in 2035

Key takeaway – Serious effort to develop electric planes. Opportunities for National Facilities to speed up risk retirement

23/02/2022

Airbus Advanced Superconducting & Cryogenic Experimental powertrain Demonstrator (ASCEND) project

- 1. Energy storage,
- 2. Conversion from energy to propulsion "ASCEND is focused on the conversion part."

Opportunities for Electric Planes – Massive!

Key takeaway - Forecast of Electric Planes Opportunities *Superconducting/Cryogenics share* ~ 20-30% by 2030 (~USD 3 B)

Airbus-GMF2019-presentation-Christian-Scherer.pdf

https://www.marketsandmarkets.com/Market-Reports/aircraft-electrification-market-31650461.html

Concluding Remarks

ziad.melhem@oxgsol.com

Expected Emerging SC markets by 2030

- Fusion
- Electric planes
- SC magnetic storage
- Renewables
- Compact and portable HF magnet systems for Physical and Life Sciences
- SC quantum computing
- Superconducting Electronics
- Medical diagnostics and therapy
- Industrial
- Transport

We need new thinking on developing Superconducting Products

- Diverse challenges identified by the UN 17 SDG's and the aggressive targets of decarbonisation by 2050 require a new initiative on developing SC products for
 - Cleaner, healthier and sustainable future
- Realising the potential of SC in addressing our societal future needs will require new thinking on capturing and harnessing the enormous potential of SC. At the heart of it is establishing a three-way partnership between SC Community, Government and Big Industrials
- We are developing an initiative to identify grand challenges and a mechanism to develop the role of SC in addressing the future societal challenges.
 - Planning for an International Summit on SC Products
 - A Focused Workshop on SC initiative will be held in July 2022 to plan for the summit
 - 1. Develop a Strategic Roadmap for SC solutions and commercial products
 - 2. Develop a partnership between the SC community, Government and Private Funding and Big Industrials
 - 3. Shortlist of grand SC challenges that can make a difference
 - 4. Establish working groups to draft proposals and mechanisms for the shortlisted SC challenges
 - 5. Establish a mechanism for sustaining the development of commercial SC solutions and products linked the 17SDGs

Such an initiative will significantly enhance the SC market

Superconducting community (Research & Industry),

Big industrials (Power, Energy, Transport, Manufacturing, Health care, Life & Physical Sciences). Government & Private funding & Innovation bodies & National Laboratories bodies