

Fieldable AI for Robotics

Wenceslao Shaw Cortez, Data Scientist w.shawcortez@pnnl.gov

Soumya Vasisht, Ján Drgoňa, Draguna Vrabie, Aaron Tuor, Jan Strube

PNNL is operated by Battelle for the U.S. Department of Energy

Motivation: Robots in Unstructured Environments

Challenges: Robots in Unstructured Environments

- Unstructured environments
- Uncertain models
- From simulation to the real environment

"It worked in rehearsal."

Radiation Hardness Tests

- Disturbances:
 - Magnetic fields
 - Communication loss
 - Radiation damage
- Radiation damages electronics components
 - Instantaneous bit-flips
 - Long-term performance deterioration

carrier boards, PNNL, 2015 (link)

Image source: Radiation hardness testing of iTOP SCROD and

converter

Tackling Challenges in Unstructured Environments

- Stability:
 - Trajectory tracking, i.e., "perform the task"
 - Provides measure of robustness
- Safety:
 - Constraint satisfaction
 - Collision avoidance

Demonstration 2: Proposed Control Law

Model Predictive Control

- Advanced optimal control
- First devised for process control in 1970's
- Handles constraints and optimality
- Computationally expensive

 $\min_{\tilde{\mathbf{u}}(k)} J(\tilde{\mathbf{x}}(k+1), \tilde{\mathbf{z}}(k), \tilde{\mathbf{u}}(k))$ Cost:

subject to

Model: $\tilde{\mathbf{x}}(k+1) = \tilde{\mathbf{f}}(\tilde{\mathbf{x}}(k), \tilde{\mathbf{z}}(k), \tilde{\mathbf{u}}(k))$ Constraints: $\tilde{\mathbf{g}}(\tilde{\mathbf{x}}(k), \tilde{\mathbf{z}}(k), \tilde{\mathbf{u}}(k)) = \mathbf{0}$ $\tilde{\mathbf{h}}(\tilde{\mathbf{x}}(k), \tilde{\mathbf{z}}(k), \tilde{\mathbf{u}}(k)) \leq \mathbf{0},$

Assumption: Reliable and accurate system dynamics model is available

Drgona J., J. Arroyo, I.C. Figueroa, D. Blum, K. Arendt, D. Kim, and E.P. Olle, J. Oravec, M. Wetter, D. L. Vrabie, L. Helsen. 2020. "All You Need to Know About Model Predictive Control for Buildings." Annual Reviews in Control, September 29, 2020

Modeling challenges: Nonlinear system identification

Physics-based modeling is useful but tedious

Unknown underlying system dynamics

Pacific

Northwest

- Incomplete knowledge of model state-space
- Limited availability of operational data

Purely data driven models are unreliable

- Poor sampling efficiency
- Lack of operational safety guarantees
- Opaque and difficult to interpret

Data-driven Control Methods

Integrate Deep Learning with MPC and Physics

Automate learning of the system dynamics and model-based control policy

Automated installation: from data to optimal control policy

Endow with lifelong learning and provide performance guarantees during the learning process

Differentiable Predictive Control

From data to optimized control policy

- Theoretical connection with MPC
- Neural state space models

- Differentiable closed-loop model
- Model-based policy optimization

model zation

- Constrained optimization
- Dynamical modeling and control
 - Buildings
 - Power Systems
 - Embedded systems
 - Autonomous vehicles

Software products: https://github.com/pnnl/neuromancer https://github.com/pnnl/slim

Underwater Robotics use case

Autonomous Underwater Vehicle

Differentiable Predictive Control

- Adapt to changing environment: ocean currents, changing salinity
- Apply to different robot types:

Drgona J., et al., Differentiable Predictive Control: An MPC Alternative for Unknown Nonlinear Systems using Constrained Deep Learning, 2021. (link)

In-water Field Test

Future Directions

- Robots in unstructured environments
- Apply DPC for different robot dynamics
- Federated learning
- Multi-agent systems approach
- Heterogeneous cooperative robots

Thank you

