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Motivation: Robots in Unstructured Environments
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Challenges: Robots in Unstructured Environments

• Unstructured environments
• Uncertain models
• From simulation to the real 

environment

"It worked in rehearsal."
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Radiation Hardness Tests

• Disturbances:
§ Magnetic fields
§ Communication loss
§ Radiation damage

• Radiation damages electronics components
§ Instantaneous bit-flips
§ Long-term performance deterioration FIG. 4: SCROD and carrier board in the LSR (neutron).

V. TEST RESULTS - NEUTRON IRRADIATION

Due to restricted availability with the neutron irradiation facility and compressed schedule
to begin electronics production, the neutron irradiation tests were performed over the two-
day period of January 15-16, 2015. In order to accumulate the desired fluence in the time
available, the boardstack was placed with the face of the carrier board at a distance of
7.5 ± 0.2 cm from the neutron source (by design, the SCROD was ⇠1.7cm further away).
This distance was chosen to ensure that the least exposed portion of the board received a
minimum of the 10 year Belle II equivalent.

On the day of the test the flux at the center of the carrier board (as reported by the
LSR) was 4.6⇥ 106 n/cm2/s. Given the geometry of the approximately “active” area of the
electronics, the flux at the furthest corner of the boardstack was expected to be 2.1 ⇥ 106

n/cm2/s. The boards were irradiated for a period of 1216.7 minutes[6] as reported by the
timekeeping by the facility source operators. This is equivalent to 22.2+1.2

�1.1(12.3± 0.5) years
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FIG. 5: SCROD and carrier board in the HEF (gamma).

of Belle II operation at the carrier board center (corner), and 16.2+0.8
�0.7(10.2 ± 0.4) years at

the SCROD center (corner).
No change in the current draw from the board stack was observed. The values remained

within 0.01A (0.01V for constant current) for the duration of the tests, within the measure-
ment uncertainty and with no trends observed. During the irradiation, 11 calibration script
failures occured. One could be attributed to human error. For the remaining 10, the symp-
tom was the lost/corrupted ability to send/receive commands with the boardstack. In all
cases operation could be recovered by simply reprogramming the FPGAs, and no permanent
failures occured. As shown in Fig. 6, the failure rate was approximately constant in time
(0.46 ± 0.01 errors per hour), and therefore apparently unrelated to cumulative damage to
the boards.

Assuming that the 10 errors incurred were due to single event upsets in the Zynq chips
(as evidenced by the loss of communication and recoverable nature with reprogramming,
e.g. no apparent permanent damage), we make a rough estimate on the frequency of errors
expected during nominal Belle II operation. These tests featured a single SCROD (one
ZYNQ XC7Z045 chip) and a single carrier board (one ZYNQ XC7030 chip). Given the
positions of these chips on the boards, the Z-7045 received about 15 Belle years of neutron
fluence, while the Z-7030 received 20 years. We scale by the number of programmable logic
cells in each device (350k Z-7045, 125k Z-7030) [4], and the expected number of components
in the entire iTOP system (1 SCROD and 4 carriers per boardstack, 4 stacks per bar, 16
bars total). The result is approximately 70 ± 23 errors per “Belle II year” for the entire
system.
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4
Image source: Radiation hardness testing of iTOP SCROD and 
carrier boards, PNNL, 2015 (link)

https://indico.phys.hawaii.edu/event/1223/contributions/620/attachments/236/335/BELLE2-NOTE-TE-2015-024.pdf


Tackling Challenges in Unstructured Environments

• Stability:
• Trajectory tracking, i.e., "perform the task"
• Provides measure of robustness

• Safety:
• Constraint satisfaction
• Collision avoidance
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Tele-operation Solutions
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Let’s talk control

Assumption: Reliable and accurate system dynamics model is available

Model Predictive Control
• Advanced optimal control
• First devised for process control in 1970’s
• Handles constraints and optimality
• Computationally expensive

Drgona J., J. Arroyo, I.C. Figueroa, D. Blum, K. Arendt, D. Kim, and E.P. Olle, J. Oravec, M. Wetter, D. L. Vrabie, L. Helsen. 2020. "All You Need to Know About Model Predictive Control for Buildings." 
Annual Reviews in Control, September 29, 2020

Cost:

Model:

Constraints:
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Modeling challenges: Nonlinear system identification

Physics-based modeling is useful but tedious
• Unknown underlying system dynamics
• Incomplete knowledge of model state-space
• Limited availability of operational data

Purely data driven models are unreliable
• Poor sampling efficiency
• Lack of operational safety guarantees
• Opaque and difficult to interpret
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Data-driven Control Methods

Modern 
Control 
Methods

Deep 
Learning

Governing
Physics

Domain-aware 
Neural 
Control

Automate learning of the system 
dynamics and model-based control 
policy

Automated installation: from data to 
optimal control policy

Endow with lifelong learning and 
provide performance guarantees during 
the learning process

Integrate Deep Learning with MPC and Physics
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Differentiable Predictive Control
From data to optimized control policy

• Theoretical connection with MPC 
• Neural state space models

• Differentiable closed-loop model
• Model-based policy optimization
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DPC
Applications

• Constrained optimization
• Dynamical modeling and control

§ Buildings
§ Power Systems
§ Embedded systems
§ Autonomous vehicles

Software products:
https://github.com/pnnl/neuromancer
https://github.com/pnnl/slim
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https://github.com/pnnl/neuromancer
https://github.com/pnnl/slim


Underwater Robotics use case

Drgona J., et al., Differentiable Predictive Control: An MPC Alternative for Unknown Nonlinear Systems using Constrained Deep Learning, 2021. (link)

• Adapt to changing environment: 
ocean currents, changing salinity

• Apply to different robot types:
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In-water Field Test

https://arxiv.org/abs/2011.03699


Future Directions

• Robots in unstructured environments
• Apply DPC for different robot dynamics
• Federated learning
• Multi-agent systems approach
• Heterogeneous cooperative robots
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Thank you
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