

Wenceslao Shaw Cortez, *Data Scientist w.shawcortez@pnnl.gov*

Soumya Vasisht, Ján Drgoňa, Draguna Vrabie, Aaron Tuor, Jan Strube

PNNL is operated by Battelle for the U.S. Department of Energy

Motivation: Robots in Unstructured Environments

Challenges: Robots in Unstructured Environments

- Unstructured environments
- Uncertain models
- From simulation to the real environment

"It worked in rehearsal."

Radiation Hardness 7

- Disturbances:
	- Magnetic fields
	- § Communication loss
	- § Radiation damage

• Radiation damages electronics compo

- **Instantaneous bit-flips**
- **Long-term performance deterioration**

Tackling Challenges in Unstructured Environments

- **Stability:**
	- Trajectory tracking, i.e., "perform the task"
	- Provides measure of robustness
- **Safety:**
	- Constraint satisfaction
	- Collision avoidance

Assumption: Reliable and accurate system dynamics model is available

Model Predictive Control

- Advanced optimal control
- First devised for process control in 1970's
- Handles constraints and optimality
- Computationally expensive

Drgona J., J. Arroyo, I.C. Figueroa, D. Blum, K. Arendt, D. Kim, and E.P. Olle, J. Oravec, M. Wetter, D. L. Vrabie, L. Helsen. 2020. "All You Need to Know About Model Predictive Control for Buildings." Annual Reviews in Control, September 29, 2020

 $\min_{\tilde{\mathbf{u}}(k)}\, J(\tilde{\mathbf{x}}(k+1),\tilde{\mathbf{z}}(k),\tilde{\mathbf{u}}(k))$ Cost:

Model: $\tilde{\mathbf{x}}(k+1) = \tilde{\mathbf{f}}(\tilde{\mathbf{x}}(k), \tilde{\mathbf{z}}(k), \tilde{\mathbf{u}}(k))$ Constraints: $\tilde{\mathbf{g}}(\tilde{\mathbf{x}}(k),\tilde{\mathbf{z}}(k),\tilde{\mathbf{u}}(k))=\mathbf{0}$ $\tilde{\mathbf{h}}(\tilde{\mathbf{x}}(k), \tilde{\mathbf{z}}(k), \tilde{\mathbf{u}}(k)) \leq \mathbf{0},$

subject to

7

Modeling challenges: Nonlinear system identification

Physics-based modeling is useful but tedious

Unknown underlying system dynamics

Pacific

Northwest

- Incomplete knowledge of model state-space
- Limited availability of operational data
- Poor sampling efficiency
- Lack of operational safety guarantees
- Opaque and difficult to interpret

Purely data driven models are unreliable

Data-driven Control Methods

Automate learning of the system dynamics and model-based control policy

Automated installation: from data to optimal control policy

Endow with lifelong learning and provide performance guarantees during the learning process

Integrate Deep Learning with MPC and Physics

Differentiable Predictive Control

From data to optimized control policy

- Theoretical connection with MPC
- Neural state space models
- Differentiable closed-loop model
- Model-based policy optimization

DPC Applications

- Constrained optimization
- Dynamical modeling and control
	- § Buildings
	- Power Systems
	- **Embedded systems**
	- § [Autonomous vehicles](https://github.com/pnnl/neuromancer)

Software products: https://github.com/pnnl/neuromancer https://github.com/pnnl/slim

 0.8

 0.2

Underwater Robotics

Autonomous Underwater Vehicle

Differentiable Pre

- Adapt to changing environment: ocean currents, changing salinity
- Apply to different robot types:

Drgona J., et al., Differentiable Predictive Control: An MPC Alternative for Unknown

Future Directions

- Robots in unstructured environments
- Apply DPC for different robot dynamics
- Federated learning
- Multi-agent systems approach
- Heterogeneous cooperative robots

Thank you

