Pacific

Northwest

NATIONAL LABORATORY

Fieldable Al for Robotics

Wenceslao Shaw Cortez, Data Scientist
w.shawcortez@pnnl.gov N

Soumya Vasisht, Jan Drgofia, Draguna §
Vrabie, Aaron Tuor, Jan Strube §

U.S. DEPARTMENT OF

ENERGY BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy




Pacific

Northwest  Motivation: Robots in Unstructured Environments




o

Pacific

Northwest  Challenges: Robots in Unstructured Environments

 Unstructured environments
 Uncertain models

 From simulation to the real
environment

"It worked In rehearsal.”
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Image source: Radiation hardness testing of iTOP SCROD and
carrier boards, PNNL, 2015 (link)


https://indico.phys.hawaii.edu/event/1223/contributions/620/attachments/236/335/BELLE2-NOTE-TE-2015-024.pdf
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« Stability:

* Trajectory tracking, i.e., "perform the task"
* Provides measure of robustness

« Safety:
 (Constraint satisfaction

 (Collision avoidance




Demonstration 2: Proposed Control Law
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Cost:  min J(x(k+1).2(k),u(k))
: u(k)
Model Predictive Control

_ subject to
« Advanced optimal control

. . . : x(k+1) = f(x(k),z(k), a(k
 First devised for process control in 1970’s Model )f(s ”; )~ . (f((k) Z_( 0) (k)
« Handles constraints and optimality Constraints: ?(’f( -"f‘( k. =

« Computationally expensive h(x(k),z(k),u(k)) <0

Assumption: Reliable and accurate system dynamics model is available

Drgona J., J. Arroyo, |.C. Figueroa, D. Blum, K. Arendt, D. Kim, and E.P. Olle, J. Oravec, M. Wetter, D. L. Vrabie, L. Helsen. 2020. "All You Need to Know About Model Predictive Control for Buildings."
Annual Reviews in Control, September 29, 2020
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Body coordinate system B(P;x,y.z)
Inertial coordinate system G(O:x,.ys.2,) by, by, b Base vectors of the system B(P:x,.z)
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Purely data driven models are unreliable
» Poor sampling efficiency

Physics-based modeling is useful but tedious
* Unknown underlying system dynamics

» Lack of operational safety guarantees
* Opaque and difficult to interpret

* Incomplete knowledge of model state-space
« Limited availability of operational data
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Integrate Deep Learning with MPC and Physics

Automate learning of the system
Oa dynamics and model-based control

policy

Modern
Control
Methods

Automated installation: from data to
Domain-aware optimal control policy
Neural
Control

5 : Endow with lifelong learning and

eep Governing ] i

Learning Physics @ provide performance guarantees during
the learning process
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From data to optimized control policy
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Autoregressive neural state space model Parametrized Closed-loop dynamics
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o .
* Theoretical connection with MPC » Differentiable closed-loop model

* Neural state space models * Model-based policy optimization
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https://github.com/pnnl/neuromancer
https://github.com/pnnl/slim
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Autonomous Underwater Vehicle
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Underwater Robotics use case

Differentiable Predictive Control

Neural surrogate model of the AUV
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1, Constrained system identification
time series dataset
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Parametrized Closed-loop dynamics
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2, Control law learning with MPC loss function

» Adapt to changing environment:
ocean currents, changing salinity
* Apply to different robot types:

Drgona J., et al., Differentiable Predictive Control: An MPC Alternative for Unknown Nonlinear Systems using Constrained Deep Learning, 2021. (

In-water Field Test

link)



https://arxiv.org/abs/2011.03699
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Robots in unstructured environments

Apply DPC for different robot dynamics
Federated learning

Multi-agent systems approach

Heterogeneous cooperative robots
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Thank you




