
CMSSW I/O Update

‘The Big Picture’

• Just like last update, we’re fairly happy with
CPU efficiency.

• The majority grid use is ntuple-creation.

• Many users are re-constructing a subset of
the event or doing other CPU-intensive
work.

• The I/O-intensive stuff exists, just not
yet at an appreciable scale on the grid.

User studies
• With the version of CMSSW for the 2012 run (CMSSW_5_2_x),

we’re just now starting to look what users will do.

• Of the 3-4 analyses we’ve looked at, the “most interesting I/O”
one involves reading about 1/3 of the data in the AOD.

• About 10 complex, top-level object collectionss. Broken up into
about 500 branches

• The full collection is read for each event. However, only a part of
the collection is used.

• If there was a way to safely read part of the event, it would make a
dramatic increase in the I/O rates.

• We don’t see anything that doesn’t appear to be a loaded gun
pointed at foot.

Current I/O Tests

• Doing some “touch-ups” now that we’re on
ROOT 5.32:

• Making our statistics uniform by adding
them for Xrootd protocol.

• Less-aggressive read-ahead, but enabling
vector-reads for RFIO & dCap.

Xrootd Changes

• We are working to have the xrootd client to be
used through the CMS I/O “layer”, not TXNetFile.

• Allows us to do more thorough accounting
statistics than TFile.

• Allows us to use lazy-download (pulls
complete file to /tmp) on “known bad”
workflows: generators and merging.

• Would really love to see merging fixed...

CMS Statistics

• Our newest computing system aggregates
the per-job statistics into per-workflow
numbers.

• We’re hoping this results in more “big
picture” statistics.

• Likely, only for “central tasks”, not analysis
this year.

Touch-ups

• We are resetting TTreeCache for backward
jumps if the backward jumps are sufficiently
large.

• Approximately 0.1% of our files are
“pathological” in that the lumi section
organization causes TTreeCache to basically
turn off.

• Translates to horrible performance when
combined with read-ahead.

Touch-ups

• We do read-coalescing to decrease the number of
separate reads -- at the cost of increased total data read.

• The (old) naive implementation disables readv in
order to avoid excessive buffering and copies.

• The newer implementation uses the ROOT-provided
buffer as scratch space, plus a fixed-size temporary
buffer:

• Allows us to use read-coalescing, vector reads, and
a fixed amount of buffer space while only adding
(on average) one round trip.

New Merge Algorithm
• Recently handed Philippe a new merge sorting

algorithm that is “cluster aware”.

• Make sure all baskets in a branch are grouped
together within the cluster.

• Make sure all child branches are grouped with
their parents in the cluster.

• Sort in descending order of total top-level branch
byte size.

• Actually, fairly simple to implement in the end.

Async Prefetch
• As promised, we did some testing with async prefetch.

• It was about a 10% slowdown on the LAN, and a great
improvement on the WAN.

• The higher the latency, the greater the improvement.

• At some point, the performance graphs change-over and
the async prefetch is the best choice.

• Because it’s not a clear win in all situations, it’ll likely be
disabled by default - and hence never used.

• We’d really like the ROOT team to study optimizing this
so we can safely always turn it on.

Work left undone

• We’ve taken a few honest stabs at
implementing a “smarter” basket layout
algorithm.

• It’s proven very hard to get right.

• We’ve exhausted the clock on current
attempts: likely won’t be able to think
about it again until the summer.

Threading!

• Since CMSSW6 is likely to be multi-
threaded, thread-safety is the current hot
topic in CMS.

• ROOT I/O is very non-thread-safe,
especially in the de-serialization layer.

• Make it so? All things considered, this
might be our “top ask” to the ROOT
team.

