
WAN dCache transfers
FIFE meeting, 02/17/2022

Dmitry Litvintsev

Switch to HTTP(s)

• Observe the following errors on dCache end:
1. Channel idle for too long during upload. Ends up with

broken file replica in dCache.
2. No connection from client after 300 seconds.

Giving up. Nothing uploaded.
3. Connection lost before end of file. Ends up with broken

file replica in dCache.

• Almost all errors from
• 192.12.238.129 (gridftp000.colorado.edu)
• 137.99.174.0 subnet (uconnecticut)

Issues

• All errors listed result in failed transfers that client (ifdh cp) tries to
handle by retrying.
• But if destination exists (broken files) it fails on retry as destination already

exists and we have a policy of not overwriting destination if it already exists
(this is matter of configuration).

• Result:
• dCache accumulates broken files

• Attempts to open broken files via NFS lead to processes to be in D-
state (non-interruptible I/O). The only cure – removing the files.
• FTS that handles uploaded files hangs without much progress on processing

ingest (issue first reported by GM2)

Remedies

• Suggested to switch back from HTTP to GFTP until we figure out
solutions.
• Switched back to GFTP on 02/10 (I think).

• dCache upstream:
• NFS server already fixed not to hang on broken files (patch needs to be

deployed).
• A couple of patches made to WebDAV to try to detect and remove targets

results from failed transfers (needs to be carefully tested and deployed).

Transfers over WAN

• Looking at broken files issue brought to the fore considerations of
end-to-end data integrity when transferring TiBs of data over the
WAN.
• Yes, in this case broken files are “artificial”, should not have been left

behind and transfers did error out. So, in principle, these files should
be known to client to be bad. It is just not easy to relay this info to
other processes that monitor and handle incoming data (like FTS).
• What if file is corrupted while being transferred and transfer is

successful. Remember dCache just gets a stream of bytes and
calculates checksum to be stored in namespace. It needs to compare
it with something to guarantee end-to-end integrity!

How integrity generally handled

• LHC moves data using srm copy and it has provision to calculate and
compare local checksum with checksum calculated on the server. This
is ”on-the-flight” checksumming.
• In addition, if checksum is already known, it can be passed along for

comparison with checksum calculated by the server.
• Or file can be transferred, its checksum queried after transfer and

then compared with original local checksum by the client “manually”
• Having looked at www_cp.sh I realized that IFDH does none of the

above.
• So how can it be corrected (if agreed that this needs to be done).

Gfal?

• www_cp.sh uses curl to transfer files. Currently there is no provision to pass adler32
checksum using curl. One can use MD5 for instance by passing Content-MD5 header.
dCache then will calculate MD5 in addition to adler32. Multiple checksums may confuse
backend HSM script so needs to be tested.

• Other clients – xrdcp, globus-url-copy, srmcp support adler32. But these
options do not seem to be used by ifdh cp (I may be wrong)

• ifdh cp seems to me to be a wrapper tool that calls different clients based on
protocol specified.

• CERN has similar product – GFAL (grif file access library) that provides command line
tools like gfal-copy and gfal-sum

• gfal-copy is a uniform client that can use any supported protocol. So seems similar
to ifdh cp in functionality.

• For HTTPs transfers gfal-copy uses davix library which in turn uses neon WebDAV
client library (so does not use curl). It supports adler32 checksumming.

