

Storage and Data Management Plans

Robert Illingworth
Muon g-2/SCD Computing Workshop
2 March 2022

Storage and Data Management Plans

- dCache will remain the primary system for experiment data
- Will transition Enstore tape management to new system CTA
- SAM Data Management is essentially feature frozen
 - Future is Rucio/MetaCat
- Investigating possible alternative for interactive use (BlueArc/NAS equivalent)
 - Early stages; no promises

Data Management

- SAM is g-2's data management replica and metadata catalog
 - 43,241,372 files with metadata (including 5,291,760 retired files)
 - 43,215,800 file locations
 - 367 GB database size (about a quarter of the largest SAM DB)
- SAM is essentially feature frozen at the moment we address bugs and have implemented a few minor features, but we are not actively developing it.
- Activity has moved to newer projects: Rucio, MetaCat, etc
 - Targeting new experiments
 - DUNE
 - SBN
 - etc

SAM replacements

- SAM is a monolithic system
 - Metadata catalogue
 - Replica catalogue
 - Workflow integration (SAM station)
 - Data upload tool

- Replace with separate components; use external products where it makes sense
 - Provides more flexibility
 - Common HEP (and beyond) solutions benefit everyone

Rucio

- Data management system developed by ATLAS, now used by CMS, Belle II and either in use or planned to be used by various other experiments.
- Replica catalogue; rule-based replication and data transfer
- Currently used by DUNE and Icarus in parallel with SAM; will transition fully to Rucio
- Anticipate that SCD supported method of getting data to/from HPC will be Rucio based
- For more details see:

- https://indico.fnal.gov/event/18468/attachments/29644/36533/Rucio_for_FIFE.pptx
- https://indico.cern.ch/event/1037922/

MetaCat

- New metadata catalogue
 - Compatible with, but not integrated with Rucio
 - Attempts to address some of the performance issues we've seen with SAM
 - Worse case query complexity should be bounded
 - De-emphasize frequent evaluation of queries in favour of static datasets
- Conversion from SAM metadata is possible
 - Process likely to need some customization for each experiment
- Functionality is broadly equivalent, but not API compatible
- https://docs.google.com/presentation/d/13q-belkZyUJe-XUNj6qZpZxv 4h 7nW1znKvB4IRPU/edit?usp=sharing

Other DM components

- Will create "data dispatcher" to replace SAM station
 - DUNE needs this for ProtoDUNE II, so work is underway
 - Not API compatible, but expect similar "get next file" functionality
- Replacement for Fermi-FTS
 - Automatically register metadata with MetaCat & upload file to Rucio
 - Will be simpler as Rucio will take over data movement part
 - New name! (Not yet decided may be File Declaration Daemon if no-one comes up with anything better)
- User level functionality

- This part is less settled, but expect to use Rucio features to move/archive user data
- This would provide a way to move user output from jobs to storage

DM choices for g-2

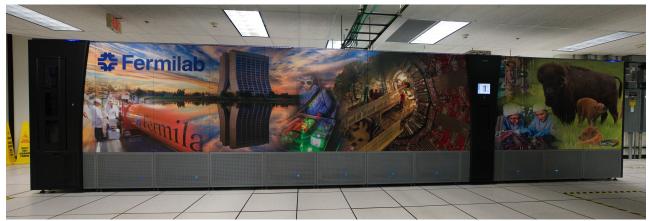
- Carry on with SAM
 - Routine support load is now fairly low; can likely keep core services operating
 - Don't expect improvements or new features
 - Performance could cause problems which are unlikely to be addressed
 - Changes in computer security requirements/OS/etc might require disruptive changes
- Migrate to new tools
 - Will be the supported IF tools going forward
 - Will be more scalable
 - Likely to require changes in workflows and interfaces

Enstore & CTA

- Enstore is the system used to manage the tape libraries
 - Design goes back over 20 years
 - Data volumes have increased massively in size
 - 2000: T9940A tape cartridge capacity 60 GB
 - Now: LTO-8 12 TB (LTO-9 will hold 18 TB)
 - Enstore was designed for petabyte scale; now at 250+
 PB and looking towards exabyte for HL-LHC
- Enstore is already showing some scalability issues and we have concluded it would require significant development effort to continue

CTA

- CERN Tape Archive https://cta.web.cern.ch/cta/
 - CERN previously used a locally developed system called CASTOR
 - Similar concerns about scalability
 - Decided to develop a new system for exabyte scale
 - Deployed in production at CERN starting June 2020
 - Also adopted by RAL in the UK (previous CASTOR site)
 - Under consideration by DESY
- We have decided to adopt CTA, with modifications necessary for our environment
 - Principal change is to enable reading of our existing data
 - Conversion should be a metadata (database) change only
 - Second concern is how to handle SFA
 - Right approach still under consideration



What does this mean for experiments?

- Plans for CTA still under development
- For most people not much will change
 - Uploading and staging files will still be via SAM/dCache/Rucio interface (see later)
 - Few people interact directly with enstore commands now, and I don't expect that to change
- Likely new monitoring and information
- Support and development will be spread over more people in more institutes
 - More viable long-term support

New tape library purchase

We are in the process of purchasing a new tape library as the existing public libraries are approaching capacity.

The pictures show last year's new CMS library. (Not necessarily indicative of what we buy next)

Data lifetimes

- Data archived on tape is an ongoing cost even if it's not being accessed
 - Requires space in the tape libraries and every few years must be migrated to a new generation of tape media
- It's an ongoing struggle to get experiments to consider the useful lifetimes of datasets, and to delete them when they are no longer useful
 - Deleting datasets potentially allows us to recycle tapes for other purposes, or to free slots in the library
 - At the very least it's data we know we don't have to eventually migrate, which reduces the long term cost

dCache

- Evolutionary development
 - lots of internal improvements I'm not going to discuss here
- Protocol changes
 - Gridftp deprecated; no immediate plans to disable it
 - https/WebDAV & xrootd are the preferred protocols
- Authentication changes
 - X509 auth is going away
 - Tokens are implemented
 - Tokens work by capabilities **not** by identity
 - A token authorized transfer can only write to the paths permitted by the token regardless of existing directory ownership
 - May require reorganization of some user directories

dCache quotas

- Quota feature now available on dCache
 - Not enabled by default
 - Group and user quotas available
 - Can put separate quotas on persistent disk usage and tape usage
 - But since this seems to confuse people: you cannot use quotas to control tape cache usage
- Primary use case is to control persistent usage
 - Keep users under control...
- See https://indico.fnal.gov/event/51486/ for more details
- Make a servicedesk request if you are interested in pursuing this

Tape staging performance

- We know staging performance has been an issue
 - We're never going to get enough tape drives or disk space to keep everybody happy, but there is scope to improve the efficiency of what we've got
- A reoccurring problem is due to poor request queuing between dCache and Enstore
 - dCache is not tape location aware and each pool has an independent queue of files to stage
 - To avoid overloading Enstore the number of requests dispatched to it must be limited
 - Consequence is that dCache sends an unordered subset of files from each pool to Enstore, which then can't efficiently order tape accesses
- Too many unnecessary mounts and dismounts; too much spooling back and forth of tape

Tape staging performance improvements

- Switching to Enstore to CTA may help with this as it should be able to accept more pending stage requests
 - Doesn't solve all the issues
- · We are investigating making dCache more tape aware
 - Fetch location on tape; direct requests for same tape to the same pool
 - Grouping requests like this should make tape accesses more efficient
- Seen benefits of similar approach while optimizing the media migration process
 - As much as 4x throughput (real world results may vary)
 - Semi-manual implementation
 - Needs to be built into standard staging process
- Planning to try this in the relatively near term

Disorganized file staging

- The dCache r/w disk works as a cache (dedicated or shared)
 - Files are staged to disk on access (very inefficient) or an explicit request
 - Dropped from cache according to LRU algorithm
- Current situation is simple but effectively a "free-for-all"
 - User access can be very disorganized
 - Production type workflows are better, but still vulnerable to other experiments (especially on the shared cache)
- We encourage a semi-manual process with "prestage" SAM tasks
 - No control when files drop out of cache

Organized file staging

- We want to move large experiments towards a more controlled system
 - Require files to be staged and unstaged explicitly
- The SAM tools are not designed for this; will really require Rucio
- More than one approach
 - Split out a separate staging pool (not accessible to users/jobs) and require the experiment to transfer the data to the disk pools before use – the CMS configuration
 - Turn off implicit staging and require explicit dCache QoS (Quality of Service) transitions to make the data available (not supported by Rucio yet, but it is planned)
- Is g-2 a large experiment for this purpose
 - Requires more active involvement from experiment computing to decide what deserves to be on disk

Scientific NAS replacement?

- We're aware that the functionality of the Scientific NAS ("BlueArc") is popular
 - POSIX filesystems are convenient
 - dCache pnfs does not fully replace it
 - But the NAS is provided by an expensive hardware appliance; we do not plan to replace it when the warranty expires
- We are currently in the early stages of investigating a possible replacement using CephFS (https://docs.ceph.com/en/latest/cephfs/), a distributed open-source file system
- We do not expect this to replace dCache for large scale data storage; this would be for use-cases like interactive analysis of ntuples
- Needs more investigation before we can decide if this is the right approach

Conclusions

- Think about SAM->Rucio transition
- Enstore -> CTA transition should put us in a better position for the long term, but will have relatively little direct impact on end users
- dCache will remain as main data store
 - Have to keep up with protocol and authorization changes
- We're looking at ways to improve tape staging performance, but need to think about changing to a more controlled staging model
- Considering NAS alternative for use cases where dCache is less suitable

