VLENF SuperBIND Analysis Update

R. Bayes

¹School of Physics and Astronomy University of Glasgow

March 9, 2012

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

An Erratum

Single Particle Simulations

Reconstruction Rethink

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Error in Reversed B-Field Analysis

- There was an inconsistency in the analysis of the reversed B-Field simulation.
- ► Charge selection used *L*₄ criteria, instead of *L*₁.
- Selection efficiency is lower than earlier reported.
- All other signals were the same.

- Reversing field polarity does not improve the result.
- ▶ Best efficiency from stored $\mu^- \bar{\nu}_\mu$ CC signal.
 - $\bar{\nu}_{\mu}$ CC Eff 0.1473(1)
 - ν_μCC μ⁺ background 1.2×10⁻⁵

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

 NC backgrounds negligable

Error in Reversed B-Field Analysis

- There was an inconsistency in the analysis of the reversed B-Field simulation.
- Charge selection used L₄ criteria, instead of L₁.
- Selection efficiency is lower than earlier reported.
- All other signals were the same.

- Reversing field polarity does not improve the result.
- - $\bar{\nu}_{\mu}$ CC Eff 0.1473(1)
 - ν_μCC μ⁺ background 1.2×10⁻⁵

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

 NC backgrounds negligable

Error in Reversed B-Field Analysis

- There was an inconsistency in the analysis of the reversed B-Field simulation.
- Charge selection used L₄ criteria, instead of L₁.
- Selection efficiency is lower than earlier reported.
- All other signals were the same.

- Reversing field polarity does not improve the result.
- ▶ Best efficiency from stored $\mu^- \bar{\nu}_\mu$ CC signal.

 - ν_µCC µ⁺ background 1.2×10⁻⁵

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 NC backgrounds negligable

Evaluation of Sources of Charge Mis-ID

Use simplified definitions for efficiency

- Charge ID efficiency:
 - Numerator: Number of events fit with correct reconstructed charge.
 - Denominator: Number of fitted events.
- Reconstruction Efficiency:
 - Numerator: Number of fitted events.
 - Denominator: All collected events.

Consider Simplified Simulation

- Single particle simulations to test reconstruction.
- Compare the result to standard sim. to find failures.

Single μ^+ simulation in SuperBind

- ▶ 10⁵ μ^+ simulated.
- ▶ µ⁺ start from random position.
- zero transverse momentum.
- Momenta uniformly distributed between 0.2 GeV/c and 2 GeV/c.
- Nearly 100% charge efficiency for ρ_μ > 1 GeV/c.
- Uniform 81% reconstruction efficiency at all momenta.

Charge ID Efficiency

Reconstruction Efficiency

Single μ^- simulation in SuperBind

- ▶ 10⁵ µ[−] simulated.
- ▶ µ[−] start from random position.
- zero transverse momentum.
- Momenta uniformly distributed between
 0.2 GeV/c and 2 GeV/c.
- Charge efficiency < 97%.
- Reconstruction efficiency decreases linearly with momentum

Charge ID Efficiency

Reconstruction Efficiency

Efficiencies in Standard Simulations

- Consider GENIE based simulation.
- $10^5 \bar{\nu}_{\mu}$ CC simulation.
- ▶ Signal events are μ^+
- Charge efficiency increases with momentum to 95%

Charge ID Efficiency

Reconstruction Efficiency

What has been learned?

Reconstruction of μ^+ very good for p_{μ} > 1 GeV/c

- Charge ID almost perfect for single muons in this region
- Reconstruction efficiency uniform.
- (not shown) Majority of reconstruction failures due to lack of measurements either before pattern recognition or fitting.

Results from $\bar{\nu}_{\mu}$ CC event reconstruction not as good.

- What is missing in single particle simulation?
 - 1. Muons generated off axis—Is multiple scattering a problem?
 - 2. Hadronization or other showers—No pions in single muon simulation.

Can the sources of mis-ID be tested?

Multiple scattering as a source of failure

- Single particle can be changed to simulate muons produced at π/4 angle to detector axis.
 - increase amount of multiple scattering in iron by factor of $\sqrt{2}$.
 - should increase threshold before optimal charge ID.

Hadronization as a source of charge mis-ID

- Run single particle simulation of pions.
 - Check the muon charge ID and reconstruction efficiency.
 - Is there a way to positively identify muons reconstructed from pions?

Offaxis single muon Simulation

- Simulated 10⁵ μ⁺ with momenta between 0.2 GeV/c and 2.0 GeV/c with cos θ = 1/sqrt2.
- There is a loss in charge ID and reconstruction efficiency for off-axis μ⁺.

Charge ID Efficiency

Reconstruction Efficiency

Single π^+ Simulation

- Run the simulation as before—no change in reconstruction.
- Select tracks with positive charge.
- Reconstruction efficiency lower than for muons—but the majority of events are being reconstructed.
- Charge ID decreases with pion momentum—could be inconsistancy of Eloss correction?

Charge ID Efficiency

Reconstruction Efficiency

Do We Have the Right Information at this Energy Range

- Using the same analysis as that derived for 25 GeV MIND.
- Primary tool for background reduction is number of hits and track quality.
 - Number of hit is neutral current rejection.
 - Track quality serves as CC and NC background rejection.
- Lower energy \rightarrow shorter tracks and fewer hits
 - Difference between N hits distribution not as great.
 - σ_{q/p}/(q/p) distribution more broad and double peaked for correct charge ID.
- Other charge selection criteria do not do as well.
- Need to redevelop analysis and produce other criteria.

Why the Energy Range Matters

MIND was optimized for DIS events

- Majority of events are DIS.
- Typified by long track with localized activity.
- Only one muon track is identified in reconstruction.

Most detector events generated by VLENF are QES

- \blacktriangleright $\nu_{\mu} + \mathbf{n} \rightarrow \mu^{-} + \mathbf{p}$
- ▶ $\bar{\nu} + p \rightarrow \mu^+ + n$
- Inherent asymmetry to events.
- More charged secondaries in ν_μ events.
- Is it possible to confuse tracks?

Viewing QES events as they appear in Detector.

$\bar{\nu}_{\mu}$ CC Events

 ν_{μ} CC Events

- Selected QES interactions from first 100 Events of ν_μ and ν
 _μ GENIE simulations.
- Look at
 - All Selected Events.
 - All Fitted QES events.
 - QES with correct charge ID.
- There are two track events both simulations
 - In ν_{μ} events this is proton.
 - In $\overline{\nu}_{\mu}$ it is likely more complicated.
- All tracks should be fitted.
 - Topology can be used for CC selection.
 - What if most hits is not the longest track?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Viewing QES events as they appear in Detector.

$\bar{\nu}_{\mu}$ CC Events

 ν_{μ} CC Events

- Selected QES interactions from first 100 Events of ν_μ and ν
 _μ GENIE simulations.
- Look at
 - All Selected Events.
 - All Fitted QES events.
 - QES with correct charge ID.
- There are two track events both simulations
 - In ν_{μ} events this is proton.
 - In $\overline{\nu}_{\mu}$ it is likely more complicated.
- All tracks should be fitted.
 - Topology can be used for CC selection.
 - What if most hits is not the longest track?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Viewing QES events as they appear in Detector.

$\bar{\nu}_{\mu}$ CC Events

 ν_{μ} CC Events

- Selected QES interactions from first 100 Events of ν_μ and ν
 _μ GENIE simulations.
- Look at
 - All Selected Events.
 - All Fitted QES events.
 - QES with correct charge ID.
- There are two track events both simulations
 - In ν_{μ} events this is proton.
 - In $\overline{\nu}_{\mu}$ it is likely more complicated.
- All tracks should be fitted.
 - Topology can be used for CC selection.
 - What if most hits is not the longest track?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Viewing Other Events as they Appear in the Detector

$\bar{\nu}_{\mu}$ DIS CC Events

 $\bar{\nu}_{\mu}$ RES CC Events

- Selected DIS and RES events from first 100 events of ν
 μ
 GENIE simulation.
- Look at
 - All events.
 - Correct charge ID events.
 - Incorrect charge ID events.

Similar problems occur.

- Multiple tracks are not properly dealt with.
- Most hits does not always mean the longest track.

・ コット (雪) (小田) (コット 日)

- Similar solution Fit all tracks.
- Reformulation of reconstruction in progress.

Viewing Other Events as they Appear in the Detector

$\bar{\nu}_{\mu}$ DIS CC Events

 $\bar{\nu}_{\mu}$ RES CC Events

- Selected DIS and RES events from first 100 events of ν
 μ
 GENIE simulation.
- Look at
 - All events.
 - Correct charge ID events.
 - Incorrect charge ID events.
- Similar problems occur.
 - Multiple tracks are not properly dealt with.
 - Most hits does not always mean the longest track.

ヘロア 人間 アメヨア ヘヨア

- Similar solution Fit all tracks.
- Reformulation of reconstruction in progress.

Viewing Other Events as they Appear in the Detector

$\bar{\nu}_{\mu}$ DIS CC Events

$\bar{\nu}_{\mu}$ RES CC Events

- Selected DIS and RES events from first 100 events of ν
 μ
 GENIE simulation.
- Look at
 - All events.
 - Correct charge ID events.
 - Incorrect charge ID events.
- Similar problems occur.
 - Multiple tracks are not properly dealt with.
 - Most hits does not always mean the longest track.

ヘロア 人間 アメヨア ヘヨア

- Similar solution Fit all tracks.
- Reformulation of reconstruction in progress.

Summary

- We have hit a limit with the existing reconstruction/analysis.
- Alterations to the analysis are necessary.
- Will have to address two weaknesses
 - Appearent sensitivity to scattering can this be "fixed"?

(ロ) (同) (三) (三) (三) (○) (○)

 Selection of longest set of single hits — need to fit everything.