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Error in Reversed B-Field Analysis

I There was an inconsistency in the analysis of the reversed
B-Field simulation.

I Charge selection used L4 criteria, instead of L1.
I Selection efficiency is lower than earlier reported.
I All other signals were the same.
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Evaluation of Sources of Charge Mis-ID

Use simplified definitions for efficiency

I Charge ID efficiency:
I Numerator: Number of events fit with correct reconstructed

charge.
I Denominator: Number of fitted events.

I Reconstruction Efficiency:
I Numerator: Number of fitted events.
I Denominator: All collected events.

Consider Simplified Simulation

I Single particle simulations to test reconstruction.
I Compare the result to standard sim. to find failures.



Single µ+ simulation in SuperBind

I 105 µ+ simulated.
I µ+ start from random

position.
I zero transverse

momentum.
I Momenta uniformly

distributed between
0.2 GeV/c and 2 GeV/c.

I Nearly 100% charge
efficiency for
pµ > 1 GeV/c.

I Uniform 81%
reconstruction efficiency at
all momenta.
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Single µ− simulation in SuperBind

I 105 µ− simulated.
I µ− start from random

position.
I zero transverse

momentum.
I Momenta uniformly

distributed between
0.2 GeV/c and 2 GeV/c.

I Charge efficiency < 97%.
I Reconstruction efficiency

decreases linearly with
momentum
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Efficiencies in Standard Simulations

I Consider GENIE based
simulation.

I 105 ν̄µ CC simulation.
I Signal events are µ+

I Charge efficiency
increases with momentum
to 95%
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What has been learned?

Reconstruction of µ+ very good for pµ > 1 GeV/c

I Charge ID almost perfect for single muons in this region
I Reconstruction efficiency uniform.
I (not shown) Majority of reconstruction failures due to lack

of measurements either before pattern recognition or
fitting.

Results from ν̄µCC event reconstruction not as good.

I What is missing in single particle simulation?
1. Muons generated off axis—Is multiple scattering a

problem?
2. Hadronization or other showers—No pions in single muon

simulation.



Can the sources of mis-ID be tested?

Multiple scattering as a source of failure

I Single particle can be changed to simulate muons
produced at π/4 angle to detector axis.

I increase amount of multiple scattering in iron by factor of√
2.

I should increase threshold before optimal charge ID.

Hadronization as a source of charge mis-ID

I Run single particle simulation of pions.
I Check the muon charge ID and reconstruction efficiency.
I Is there a way to positively identify muons reconstructed

from pions?



Offaxis single muon Simulation

I Simulated 105 µ+ with
momenta between 0.2 GeV/c
and 2.0 GeV/c with
cos θ = 1/sqrt2.

I There is a loss in charge ID
and reconstruction efficiency
for off-axis µ+.
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Single π+ Simulation

I Run the simulation as
before—no change in
reconstruction.

I Select tracks with positive
charge.

I Reconstruction efficiency
lower than for muons—but
the majority of events are
being reconstructed.

I Charge ID decreases with
pion momentum—could be
inconsistancy of Eloss
correction?
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Do We Have the Right Information at this Energy
Range

I Using the same analysis as that derived for 25 GeV MIND.
I Primary tool for background reduction is number of hits

and track quality.
I Number of hit is neutral current rejection.
I Track quality serves as CC and NC background rejection.

I Lower energy→ shorter tracks and fewer hits
I Difference between N hits distribution not as great.
I σq/p/(q/p) distribution more broad and double peaked for

correct charge ID.
I Other charge selection criteria do not do as well.
I Need to redevelop analysis and produce other criteria.



Why the Energy Range Matters

MIND was optimized for DIS events

I Majority of events are DIS.
I Typified by long track with localized activity.
I Only one muon track is identified in reconstruction.

Most detector events generated by VLENF are QES
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I νµ + n→ µ− + p
I ν̄ + p → µ+ + n
I Inherent asymmetry to events.
I More charged secondaries in
νµ events.

I Is it possible to confuse
tracks?



Viewing QES events as they appear in Detector.

ν̄µ CC Events
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I Selected QES interactions
from first 100 Events of νµ and
ν̄µ GENIE simulations.

I Look at
I All Selected Events.
I All Fitted QES events.
I QES with correct charge ID.

I There are two track events
both simulations

I In νµ events this is proton.
I In ν̄µ it is likely more

complicated.
I All tracks should be fitted.

I Topology can be used for
CC selection.

I What if most hits is not the
longest track?
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Viewing QES events as they appear in Detector.
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Viewing Other Events as they Appear in the Detector

ν̄µ DIS CC Events
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ν̄µ RES CC Events
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I Selected DIS and RES events
from first 100 events of ν̄µ
GENIE simulation.

I Look at
I All events.
I Correct charge ID events.
I Incorrect charge ID events.

I Similar problems occur.
I Multiple tracks are not

properly dealt with.
I Most hits does not always

mean the longest track.
I Similar solution — Fit all

tracks.
I Reformulation of

reconstruction in progress.



Viewing Other Events as they Appear in the Detector
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Viewing Other Events as they Appear in the Detector
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I Look at
I All events.
I Correct charge ID events.
I Incorrect charge ID events.

I Similar problems occur.
I Multiple tracks are not

properly dealt with.
I Most hits does not always

mean the longest track.
I Similar solution — Fit all

tracks.
I Reformulation of

reconstruction in progress.



Summary

I We have hit a limit with the existing reconstruction/analysis.
I Alterations to the analysis are necessary.
I Will have to address two weaknesses

I Appearent sensitivity to scattering — can this be “fixed”?
I Selection of longest set of single hits — need to fit

everything.
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