Accelerator-Based Dark Sector Searches: Connections with the Neutrino Frontier

Brian Batell University of Pittsburgh

Snowmass Agora April 22, 2022

Neutrinos as a prototype for a dark sector

• 1930s, Beta decay:

$$n \rightarrow p + e^-$$

Continuous spectrum!

Pauli proposes a radical solution - the neutrino

$$n \rightarrow p + e^- + \bar{\nu}$$

- Good prototype for a dark sector!
 - neutrino is electrically neutral
 - weakly interacting, light
 - ullet interacts with e, p, n through "portal" $(ar p \gamma^\mu n)(ar e \gamma_\mu
 u)$

How do we study neutrinos?

• (Weak) Decays of heavy particles $(\mu, \tau, \text{hadrons}, W, Z, t)$

Reactors

Accelerators

• Astrophysical systems (stars, supernovae, cosmic-rays ...)

We can use similar means to study dark sectors

How do we study neutrinos?

• (Weak) Decays of heavy particles $(\mu, \text{hadrons}, W, Z, t...)$

Reactors

Accelerators

• Astrophysical systems (stars, supernovae, cosmic-rays ...)

We can use similar means to study dark sectors

Accelerator neutrino beam experiments

- High intensity proton beam fixed target experiment enormous collision luminosities
- Large acceptance due to forward kinematics, short baselines, large volume detectors
- Modern neutrino detectors enjoy excellent particle ID and reconstruction capabilities
- These features also extend to searches for dark sector particles

Dark mediators at accelerator neutrino experiments

See for example:

[Gorbunov, Shaposhnikov] (HNLs)

[Essig, Kaplan, Harnik, Toro] (ALPs, Dark Photons)

. . .

Dark matter at accelerator neutrino experiments

See for example:

[BB, Pospelov Ritz][deNiverville, Pospelov Ritz][Coloma, Dobrescu, Frugiuele, Harnik][Kahn, Krnjaic, Thaler, Toups][de Romeri, Kelly, Machado, Krnjaic]

. . .

Dark neutrinos from neutrino beams

$$(\nu \to \nu_D, \nu_D \to \nu \ell^+ \ell^-)$$

See for example:

[Gninenko]

[Magill, Plestid, Pospelov, Tsai]

[Bertuzzo, Jana, Machado, Funchal]

[Ballett, Pascoli, Ross-Lonergan]

. . .

Models, production mechanisms, and signatures

Model	Production	Detection
Higgs Portal	K, B decay	Decay $(\ell^+\ell^-)$
	π^0 , η Decay	Scattering (χe^- , χX , Dark Tridents)
Vector Portal	Proton Bremmstrahlung	Decay $(\ell^{+}\ell^{-}, \pi^{+}\pi^{-})$
	Drell-Yan	Inelastic Decay $(\chi \to \chi' \ell^+ \ell^-)$
Neutrino Portal	$\pi, K, D_{(s)}, B$ decay	Decay (many final states)
ALP Portal	Meson Decay	Decay $(\gamma \gamma)$
$(\gamma$ -coupling dominant)	Photon Fusion	Inverse Primakoff process
	Primakoff Process	
Dark Neutrinos	SM Neutrino	Upscattering + Decay $(\nu \to \nu_D, \nu_D \to \nu \ell^+ \ell^-)$
Dipole Portal	Dalitz Decay	Decay $(\nu_D \to \nu \gamma)$
ν philic Mediators	SM Neutrino	Scattering (Missing p_T , SM Tridents)

Table 1: A selection of models that can be probed by neutrino beam experiments.

Table from "Dark Sector Studies at Neutrino Beams NF03 Whitepaper" (to appear)

Experimental Landscape

- Past/existing neutrino experiments provide some of the best constraints on dark sectors
 - e.g., CHARM, Nu-Cal, MINOS, MiniBooNE, MINERvA, ArgoNeuT, MicroBooNE, JSNS²,...
- Coherent Elastic Neutrino Nucleus Scattering (CEvNS) experiments can also provide sensitive probes
 - e.g., COHERENT, CCM, MINER, CONUS, CONNIE, ...
- The FNAL SBN Experiments and in the future DUNE (and its near detector complex),
 as well as new experiments harnessing PIP-2 upgrades, will be able to explore a variety of
 dark sector models
- Neutrino experiments located in the far forward direction at the LHC offer interesting, complementary sensitivity
 - e.g., FASER ν , FORMOSA, FLArE, ...

Neutrino beam experiments provide a critical and complementary component of the wider experimental program to search for dark sector searches

MiniBooNE-DM @ FNAL

[MiniBooNE-DM, Phys. Rev. D 98 (2018) 11, 112004]

- 8 GeV protons on iron dump; 800 ton mineral oil detector
- Dedicated off target / beam dump run mode, collected 1.9E20 POT
- Leading limits on vector portal dark matter model for ~ 100 MeV mass range
- Demonstrates proton beam dump as an effective search method for light dark matter

Short Baseline ν -Experiments @ FNAL

- MicroBooNE, SBND, ICARUS LArTPC detectors
- Situated along 8 GeV Booster beam line and slightly off axis from 120 GeV NuMi beam line
- Will collect ~ 10²¹ POT over next several years
- These experiments have sensitivity to a variety of dark sector models
- Example: MicroBooNE search for Higgs portal scalar

[MicroBooNE, Phys. Rev. Lett 127 (2021) 15, 151803]

[See also BB, Berger, Ismail, 1909.11670, for prospects at ICARUS and SBND]

DUNE Near Detector @ FNAL

- 120 GeV proton beam, ~10²² POT
- Multi-Purpose Near Detector (MPD): I ton gaseous Argon TPC, surrounded by ECAL, located 574m downstream of target

- Sensitivity to a variety of dark sector models
- Example: Heavy Neutral Leptons at DUNE MPD

[Berryman, de Gouvea, Fox, Kayser, Kelly, Raaf] [Ballett, Boschia, Pascoli] [Coloma, Fernandez-Martinez, Gonzalez-Lopez

DUNE MPD

[Coloma, Fernandez-Martinez, Gonzalez-Lopez, Hernandez-Garcia, Pavlovic]

GeV-scale CE ν NS Experiments

- First observation of Coherent Elastic Neutrino Nucleus Scattering (CEvNS) by COHERENT! [Science 357 (2017) no.6356, 1123-1126]
- CE\(\nu\)NS experiments can probe light dark matter: [de\(\text{Niverville}\), Pospelov, Ritz] [Ge, Shoemaker]

Example: COHERENT@ORNL and CCM@LANL sensitivity to vector portal DM

[arXiv: 2105.14020]

Opportunities with the FNAL Proton Improvement Project 2 (PIP-2)

- As part of FNAL PIP-2 upgrade, Booster will be replaced, Main Injector will be upgraded
- Excess protons at \sim 1 GeV, \sim 10 GeV, 120 GeV will be potentially available for a variety of physics applications, including dark sector studies.

Proton beam dump experiments: I GeV PIP2-BD and I0 GeV SBN-BD

[See Toups et al. 2203.08079, 2203.08102, Snowmass whitepapers]

- Physics opportunities: CEvNS studies, searches for light sterile- ν , sub-GeV DM, ALPs, ...
- I GeV PIP2-BD capabilities: MW class intensity (10²²-10²³ POT/year), short beam pulse (< 30 ns), low duty factor (10⁻⁴-10⁻⁶)
- Highlights: vector portal DM and axion-like particle coupled to photon at PIP2-BD

Forward LHC ν -experiments (FASER ν , FLArE, ...)

- Total LHC pp cross section is ~100 mb, and is directed in the forward region
 - Copious source of TeV energy neutrinos
 - First collider-produced neutrinos detected by FASER ν [arXiv:2105.06197]
 - Exciting prospects at FASER ν , SND@LHC (Run 3) and FASER ν 2, FLArE, FORMOSA (HL-LHC)
- Dark sectors can also be explored with forward LHC experiments See next talk by J. Feng
 - For full physics case, see Forward Physics Facility whitepaper [arXiv:2203.05090]
- Example: vector portal dark matter

[BB, Feng, Feig, Ismail, Kling, Abraham, Trojanowski] [2101.10338, 2107.00666, 2111.10343]

Dark Sectors and the MiniBooNE Low Energy Excess

 MiniBooNE observes an excess of low energy electron-like events (LEE)

[arXiv:0812.2243, 1805.12028, 2006.16883]

- Several dark sector explanations of the MiniBooNE LEE have been put forth
- Example: dark neutrino portal

[Bertuzzo, Jana, Machado, Funchal]

[Ballett, Pascoli, Ross-Lonergan]

For other dark sector explanations, see works of Gninenko; Fischer, Hernandez-Cabezudo, Schwetz; Brdar, Fischer, Smirnov; Datta, Kamali, Marfatia; Dutta, Ghosh, Li; de Gouvea, Peres, Prakash, Stenico; Dutta, Kim, Thompson, Thornton, Van de Water; ...

Other exciting topics at the interface of neutrinos, neutrino experiments, and dark sectors

Inelastic DM at neutrino experiments see e.g., [Jordan, Kahn, Krnjaic, Moschella, Spitz]

Neutrino portal dark matter see e.g., [Bertoni, Ipek, McKeen, Nelson], ...

Neutrinos (or Sterile Neutrinos) coupled to dark forces

- Non-standard neutrino tridents: see e.g., [Altmannshofer, Gori, Pospelov, Yavin],...
- Probes with CEvNS see e.g., [Liao, Marfatia], [Denton, Farzan, Shoemaker], ...
- Neutrino mass models see e.g., [Bertuzzo, Jana, Machado, Funchal], [Ballet, Hostert, Pascoli]

Radioactive sources of dark states: see e.g., [Izaguirre, Krnjaic, Pospelov], [Pospelov, Tsai], ...

Atmospheric sources of dark states: see e.g., [Coloma, Hernandez, Munoz, Shoemaker], ...

Solar, astrophysical sources of dark states many studies...

See also:

"White Paper on New Opportunities at the Next-Generation Neutrino Experiments (Part 1: BSM Neutrino Physics and Dark Matter)" https://arxiv.org/abs/1907.08311

"Dark Sector Studies at Neutrino Beams NF03 Whitepaper" (to appear)

Summary and Outlook

- Expansive worldwide program of neutrino experiments will provide a fertile ground for dark sector searches in the coming years
- Complementary to other experimental approaches (probing hadronic couplings, neutrino-philic couplings, ...)
- Accelerator neutrino experiments already provide some of the best limits on dark sector models. Future experiments will improve on existing limits by I-2 orders of magnitude
- Still significant room for exploration in theory/model/signature space,
 particularly regarding scenarios connecting dark sectors to neutrinos
- Many exciting experiments and results on the horizon!