

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Accelerator Frontier Outlook on Dark Sector Searches

Jeffrey Eldred

Accelerator-based Dark Sector Searches Agora

April 22nd 2021

Talk Structure

Intense Proton Rings

- LANL PSR
- ORNL SNS
- FNAL Proposed PAR
- FNAL Proposed RCS
- ESS Proposed ESSnuSB AR

Proton Slow-spill

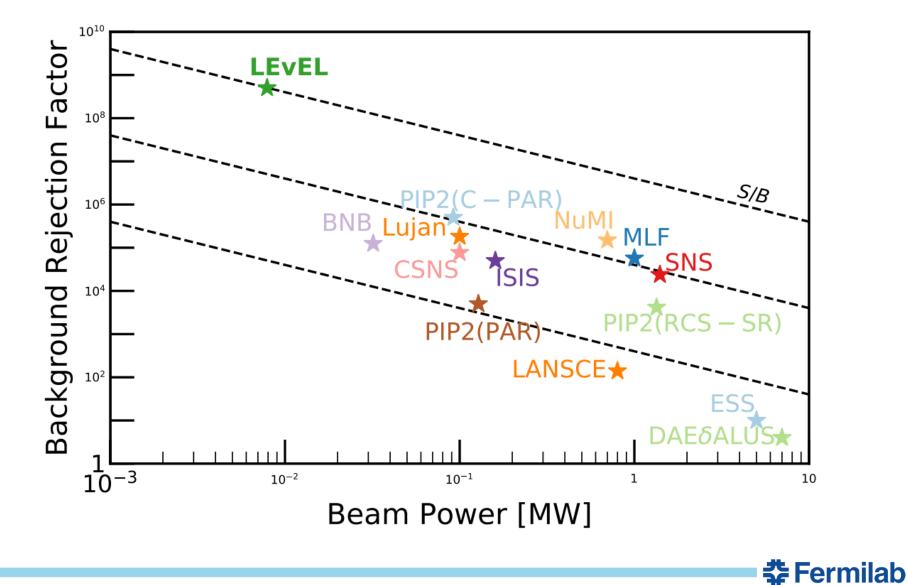
- FNAL Main Injector, PIP-II Linac

Colliders

- CERN LHC
- KEK Belle II

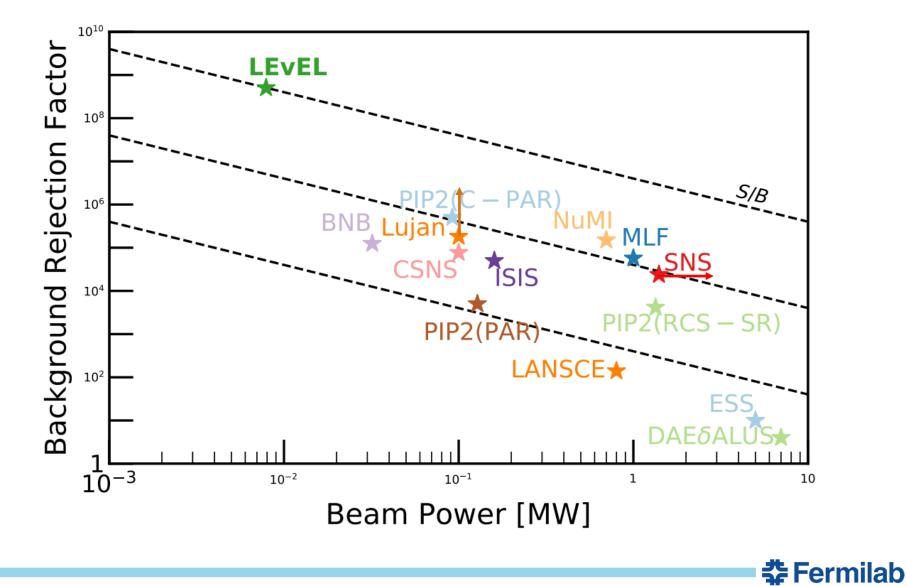
Electron Searches

- SLAC LCLS-II
- JLAB CEBAF HPS


Facility	Energy	Intensity	Rep. rate	Pulse-length	Power		
LANL PSR	$0.8 \mathrm{GeV}$	40 e12	20 Hz	$\leq 300 \text{ ns}$	0.1 MW		
SNS	$1.0 \mathrm{GeV}$	$155 \ \mathrm{e12}$	$60~\mathrm{Hz}$	$750 \mathrm{~ns}$	1.4 MW		
SNS FTS (~2023)	$1.3~{\rm GeV}$	$210 \ e12$	$^{3/4} \times 60 \text{ Hz}$	$750 \mathrm{~ns}$	2.0 MW		
SNS STS (~2030)	$1.3 { m GeV}$	$224~\mathrm{e}12$	$15~\mathrm{Hz}$	$750 \mathrm{~ns}$	$0.7 \mathrm{MW}$		
Proposed $\sim 2029-2032$							
FNAL PAR	$0.8 \mathrm{GeV}$	8 e12	100 Hz	2000 ns	0.1 MW		
FNAL C-PAR	$1.2 \mathrm{GeV}$	4.8 e12	$100 \ \mathrm{Hz}$	20 ns	$0.09 \ \mathrm{MW}$		

Proposed $\sim 2036-2042$

FNAL RCS-AR	$2.0 \mathrm{GeV}$	34 e12	120 Hz	2000 ns	1.3 MW
FNAL SBN-BD v1	$8.0 \mathrm{GeV}$	26 e 12	$^{6/12} \times 10 \text{ Hz}$	2000 ns	0.17 MW
FNAL SBN-BD v2	$8.0 \mathrm{GeV}$	37 e12	$^{23}/_{28} \times 20 \text{ Hz}$	2000 ns	0.75 MW
ESSnuSB AR	$2.5~{\rm GeV}$	$220~\mathrm{e}12$	$4 \times 14 \text{ Hz}$	1200 ns	5.0 MW



Proton Source Quality Chart

4/22/2022

Proton Source Quality Chart

4/22/2022

LANL PSR

Upgrade of PSR Snowmass <u>white paper</u>, for Coherent CAPTAIN Mills (CCM) experiment.

- **LANL PSR Capabilities**
- 40e12 protons in 300ns pulses every 20Hz (100kW at 0.8 GeV).

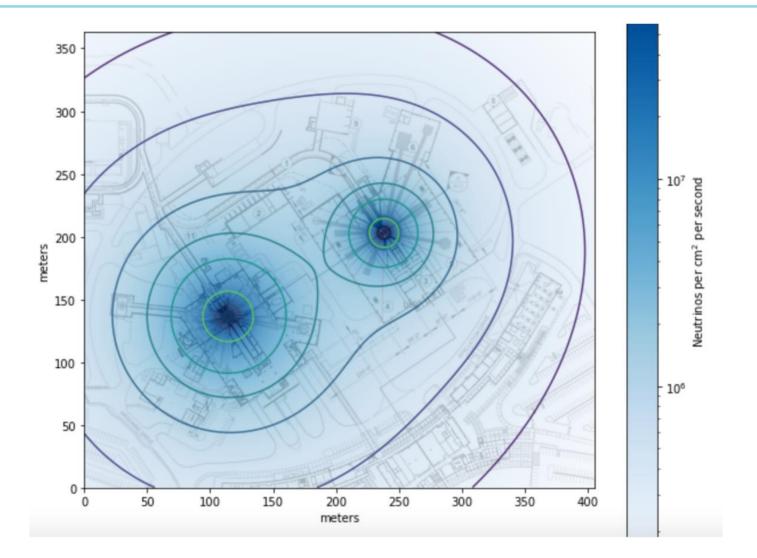
PSR with Short-Pulse Upgrade

- Aims for sub-100ns pulses, possible **30ns** pulses.
- Synergy with PSR neutron resonance experiments.
- Pulse stacking with 2nd harmonic cavities to flatten RF-wave.
- Manage impedances and electron-cloud instabilities with ferrites, transverse and longitudinal feedback systems.

ORNL SNS

SNS Proton Power Upgrade (PPU) <u>CDR</u>. COHERENT Snowmass <u>white paper</u>. SNS Capabilities

- 155e12 protons in 750ns pulses every 60Hz (1.4 MW at 0.97 GeV).


SNS with Proton Power Upgrade (PPU) ~2023

- First Target Station (FTS) ~2023: thermal n from liquid-Hg target 210e12 protons in 750ns pulses every 3/4x60Hz (2.0 MW at 1.3 GeV).

- Second Target Station (STS) ~2030: cold n from rotating-W target 224e12 protons in 750ns pulses every 15Hz (0.7 MW at 1.3 GeV).

FTS vs STS Locations (neutrinos)

Fermilab PIP-II Outlook

Fermilab Proton Improvement Plan II (PIP-II) Upgrade <u>CDR</u>. PIP2 Beam Dump (PIP2BD) Snowmass <u>white paper.</u>

PIP-II Linac Capabilities ~2029

- 2mA CW-capable at 0.8 GeV (94-99% of 1.6MW unsubscribed)

(Proposed) PIP-II Accumulator Ring (PAR)

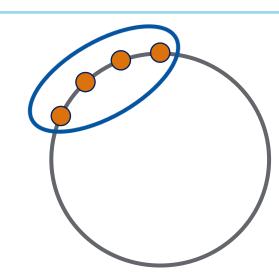
- - 0.8 GeV, 474m ring to facilitate injection into the Booster and to host PIP2-BD experimental program.
- **PIP2-BD: 8e12** protons in **2000ns** pulses every **100Hz** (**0.1 MW** at **0.8 GeV**).

- With pulse compression: ~4e12 protons in 500ns pulses every 100Hz (0.05 MW at 0.8 GeV).

- see Pellico et al. Snowmass white paper for preliminary ring design.

Fermilab PIP-II Outlook

PIP2 Beam Dump (PIP2BD) Snowmass white paper.


... or (Proposed) Compact PAR (C-PAR)

- 100m ring, better optimized for experimental program.
- Would (likely) not help with Booster injection.
- Sited to be compatible with a 1.2 GeV injection.
- Compact ring capable of high rep. rate compatible with requirements for a proposed PRISM-like CFLV. See <u>Prebys et al.</u> and <u>Aoki et al.</u>.
- PIP2-BD mode: 4.8e12 protons in 20ns pulses every 100Hz (0.09 MW at 1.2 GeV).
- CLFV mode: 0.9e12 protons in 20ns pulses every 800Hz (0.14 MW at 1.2 GeV).

C-PAR Pulse Schemes

PIP2-BD mode:

4-bunch merge and 100 Hz extraction

Four 1.2e12 bunches consecutive RF buckets

100 Hz fill

CLFV mode:

800 Hz single-bunch extraction Eight 0.9e12 bunches

every other RF bucket

4/22/2022

100 Hz fill

Fermilab RCS (Proposed)

2.4 MW RCS upgrade white papers, <u>summary</u> of two versions <u>1</u> <u>2</u>.

(Proposed) 2.4 MW RCS Upgrade for DUNE/LBNF ~2038

- A ~2 GeV upgrade of PIP-II Linac.

- New ~550m rapid-cycling synchrotron (RCS) to replace Booster ring and provide 26-37e12 protons every 10-20 Hz at 8 GeV.

Possible Accumulator Ring & Experimental Program

- A **2 GeV** ~550m AR is required by some RCS upgrade scenarios and may be beneficial for other RCS scenarios.

- If H- laser-stripping technology can be developed, this AR could operate a high-power experimental program simultaneously.

🛟 Fermilab

4/22/2022

- DM mode: ~34e12 protons in 2000ns pulses every ~120Hz (1.3 MW).

8-GeV Dark Sector Searches

- The 2.4 MW RCS upgrade would provide 170-750 kW at 8 GeV.
- The dominant factor in beam power is the RCS ramp rate.
- SBN-BD white paper Toups et al.

ESS nuSB Accumulator Ring (Proposed)

ESSnuSB Snowmass <u>white paper.</u> ESS Status & Comissioning <u>paper N. Milas et al.</u>

ESS Linac ~2026:
62.5 mA for 2.86ms every 14Hz (2.0 MW at 0.8 GeV).
ESS Linac at Full Power:
62.5 mA for 2.86ms every 14Hz (5.0 MW at 2.0 GeV).

(Proposed) ESSnuSB Accumulator Ring ~2037

Upgrade to 2.5 GeV & 10MW, with 14 Hz H- interleaved with 14 Hz p+.
ESSnuSB AR is 380m ring which extracts four 1.2us pulses separated by 0.9ms every 72ms, dividing the pulses across four neutrino targets/horns.
ESSnuSB: 220e12 protons in 1.2us pulses every 4x14Hz (5.0 MW at 2.5 GeV).

ESSnuSB white paper discusses subsequent a **2ns** proton compressor ring, to serve as a proton driver for a **future muon collider** program.

4/22/2022

Proton Dark Matter Searches

Common Themes in Intense Proton Facilities

- High power **H- injection**, foils -> lasers.
- Intense space-charge compact, GeV-scale, large aperture rings.
- Pulse compression schemes, longitudinal manipulation.
- Kickers with high rep. rate extraction, fast rise time.
- Service to multiple experimental programs.

FNAL is deciding on it's future experimental program

FNAL Slow Spill Protons

DarkQuest Snowmass white paper.

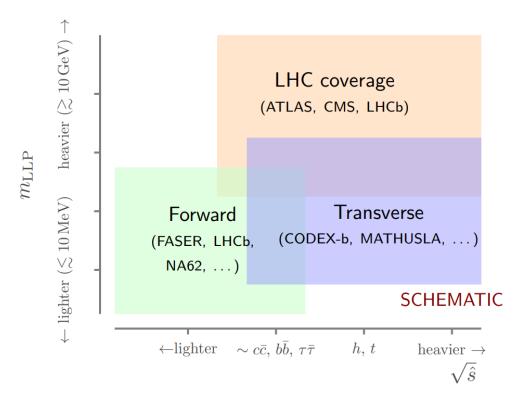
Main Injector Slow Spill

- 8e12 protons at 120 GeV, over six seconds, once a minute.
- Limited by particle loss rates during 2nd-order resonant extraction.

REDTOP paper Gatto et al.

PIP-II Linac Capabilities ~2029

- 2mA CW-capable at 0.8 GeV
- REDTOP Run-II, tagged η


Upgraded PIP-II Linac Capabilities ~2038

- 2mA CW-capable at 2.0 GeV
- REDTOP Run-III, tagged η'

CERN LHC

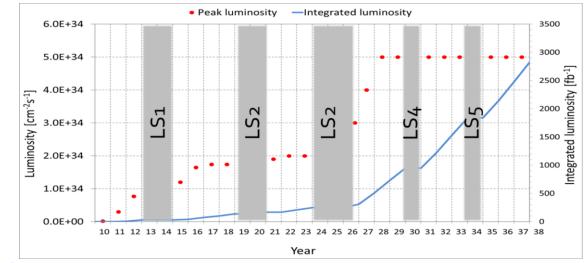
Forward Facility at HL-LHC Snowmass <u>white paper</u>. CODEX-b Snowmass <u>white paper</u>. LHC-b Dark Sector Snowmass <u>white paper</u>.

🛠 Fermilab

4/22/2022

LEvEL at LHC Beam Dump, K. Kelly et al.

CERN LHC


Forward Facility at HL-LHC Snowmass <u>white paper.</u> CODEX-b Snowmass <u>white paper.</u> LHC-b Dark Sector Snowmass <u>white paper.</u>

LHC capabilities

- 2.06e34 cm⁻²s⁻¹ instantaneous luminosity circular p⁺ p⁺ collider.
- 13 TeV center of mass energy (6.5+6.5 Gev) symmetric collision.
- also supports ion-ion collisions.

HL-LHC:

- crab cavities
- Nb3Sn quads
- bunch spacing
- detector upgrades
- B. Schmidt

FCC Snowmass white paper

🚰 Fermilab

KEK Belle II

Belle-II GAZELLE Snowmass white paper.

Belle II Capabilities

- 2.4e34 cm⁻²s⁻¹ instantaneous luminosity circular e⁺ e⁻ collider.
- 10.58 GeV center of mass energy (4+7 Gev) asymmetric collision.

Proposed Polarization Upgrade Snowmass white paper.

JLAB CEBAF HPS & APEX

HPS Snowmass <u>white paper.</u> Physics with CEBAF paper <u>J. Arrington et al.</u>

LERF Capabilities

- Up to **135pC** at **74.85 MHz CW**, **0.17 GeV** electrons, up to **~1.7 MW**. DarkLight experiment

CEBAF Capabilities

- Up to 1.3pC at 249.5 MHz CW, 1-11 GeV electrons, up to 1 MW.
 - up to 85% polarization.
- APEX experiment in Hall A.
- HPS experiment in Hall B.

HPS:	Run	Energy (GeV)	Target (% X_0 W)	Beam Time Used	$\int {\cal L} ~{ m pb}^{-1}$
пгэ	2015	1.056	0.125	9.5 days	1.17
	2016	2.30	0.125	5.5 days	10.75
	2019	4.55	0.25/0.625	30 days	122
	2021	3.74	0.625	28 days	168

Experiments need runtime, looking at target & detector improvements.

Fermilab

4/22/2022

SLAC LCLS-II

LDMX Snowmass white paper.

LCLS-II capabilities Cu Linac (now): 180pC at 120 Hz, 15 GeV electrons. SC Linac (comissioning): 100pC at 1 MHz, 4 GeV electrons. - LDMX at SLAC LCLS-II SC Linac or JLAB CEBAF.

LCLS-II-HE

- Extend SC Linac to provide 8 GeV electrons

(PEP-II / BaBar no longer operational.)

Final Thoughts

- **Common Themes in Proton Facilities**
- High power **H- injection**, foils -> lasers.
- Intense space-charge compact, GeV-scale, large aperture rings.
- Pulse compression schemes, longitudinal manipulation.
- Kickers with high rep. rate extraction, fast rise time.
- Service to multiple experimental programs.

Slow-extraction, Electron Machines & Colliders

- Experiment beamtime and real estate.
- Accelerator performance. Rep. rate, luminosity, energy, polarization.

🛠 Fermilab

4/22/2022

- Design of Dark Sector targets and detectors.

Consider also future colliders such as FCC and ILC.