Fermilab **ENERGY** Office of Science

Comparison of Electron and Neutrino Scattering Properties under GENIE Neutrino Event Generator's Models

Yuqian "Lily" Li Supervisor: Minerba Betancourt 5 min 5 slides Jun 17th 2022

Neutrino Cross-section Measurements with Electron Scattering Data Constrain

FIG. 1. The Feynman diagram for an idealized CCQE(Quasi-elastic scattering on nucleons) scattering event for a muon neutrino (left) and electron (right).

- Accurate neutrino cross-section measurements and modeling of nuclear effects are required for precise measurements of neutrino oscillation physics.
- However, interaction uncertainty will limit future oscillation experiment.
- Since neutrino beams are hard to form and measure, we propose using electrons to verify these models.
 - e & ν interact similarly
 - Many nuclear effects are identical
 - e beam energy is known, can test energy reconstruction.

Neutrino-proton scattering is complicated

- We tried to make cuts to separate the inelastic scattering using The GENIE Neutrino Monte Carlo Generator.
- We will be able to compare the electron model and neutrino model of the inelastic scattering and find sequence and shared characteristics.

Methodology- Electron and Neutrino Scattering Channels Comparisons of Carbon12

- ROOT is very flexible and provides both a programming interface to use in own applications and a graphical user interface for interactive data analysis.
- By remodifying the code, we are able to generate histograms of different properties of the electron and neutrino scattering.
 - Primary Lepton Momentum
 - Proton Momentum
 - Proton Angle
 - Primary Proton Transverse Momentum

🛟 Fermilab

4 6/16/22 Comparison of Electron and Neutrino Scattering Properties under GENIE Neutrino Event Generator's Models

Neutrino scattering interacting with different target material protons

C12

Fe56

He4

‡ Fermilab

Thank you for listening!

