

High Pressure Rinsing of Accelerator Cavities

Leon (Trey) Brown leonb@fnal.gov Final Presentation

9 August 2022

Supervisors: Cristian Boffo and Vijay Chouhan

PIP-II is a partnership of: US/DOE India/DAE Italy/INFN UK/STFC-UKRI France/CEA, CNRS/IN2P3 Poland/WUST

Fermilab Accelerator Complex

Linac energy increased from 0.4 GeV to 0.8 GeV

• Energy of Neutrinos delivered to DUNE increased from 0.75 MW to 1.2 MW

<u>Vivi</u>

- Niobium chosen for its super conductive and mechanical properties
- HPR for elliptical cavities (low beta and high beta)

Motivation

- Particle contaminates act as electron field emitters, limiting performance
- High Pressure Rinse (HPR) used to remove particle contaminates

- 3D simulation is computationally expensive
- Axisymmetric geometry can be exploited
- Simplified geometry allows a finer mesh, leading to more precise results

Setup

- Larger cells where flow is not expected improves computation time
- Adding inflation along critical boundaries improves precision
- Smooth transitions decrease mathematical errors

- Results mirrored for visual
- Inlet velocity set

Parameter	Predicted	Results	% Dif
Inlet Velocity	2.8 m/s	2.8 m/s	N/a
Force on Wall	9 N	7.42 N	17.5%

Water.Volume Fraction Phase Top				Water.Volume Fraction Phase Bot			
9.796e-01 9.184e-01 8.571e-01 7.959e-01 7.347e-01 6.735e-01 6.122e-01 5.510e-01 4.898e-01 4.286e-01 3.061e-01 2.449e-01 1.837e-01 1.224e-01 6.122e-02 0.000e+00				4.898e-02 4.592e-02 4.286e-02 3.980e-02 3.673e-02 3.061e-02 2.755e-02 2.449e-02 2.143e-02 1.837e-02 1.531e-02 1.224e-02 9.184e-03 6.122e-03 3.061e-03 0.000e+00			
	0	0.04	0.080 (m)		0	0.04	0.080 (m)

- Y+ is a non dimensional parameter used in calculating shear force
- Smaller Y+ means the viscous sub layer in resolved well

$$y^{+} = \frac{u_{\tau}\rho y_{P}}{\mu}$$
 [1]
$$u_{\tau} = \sqrt{\frac{\tau_{w}}{\rho_{w}}}$$
 the friction velocity

 ρ the fluid density y_P the distance from point P to the wall μ the fluid viscosity at point P

Conclusion

- Inflation layers in the inlet better capture the boundary layer and shape of the jet
- Inflation layers near the wall decreases Y+ and improves shear stress accuracy
- Axisymmetric geometries can be simplified to reduce calculation time

Next Steps:

- 2D simplification is limited to axisymmetric geometries
- Investigate 3D to understand wall shear
- Observe behavior of different nozzles
- Compare steady and transient results

Leon (Trey) Brown | leonb@fnal.gov

References

[1] SAS IP, Inc. (2013). Ansys Fluent User's Guide (15.0).

[2] Lecture 7: Turbulence Modeling. (2022, August). Introduction to ANSYS Fluent.

Questions?

Fermi Email: <u>leonb@fnal.gov</u> Personal Email: <u>Leontreybrown@gmail.com</u>

Supervisor Email:

Cristian Boffo - <u>crboffo@fnal.gov</u> Vijay Chouhan - <u>vchouhan@fnal.gov</u>

