Fermilab **ENERGY** Office of Science

First Look at Cosmic Ray Tagging (CRT) Track Reconstruction at ICARUS

Krish B Majethia (SIST Intern) Supervisors: Minerba Betancourt and Biswaranjan Behera SIST Presentation 9th August 2022

Introduction

- ICARUS is a LArTPC detector operating at the surface.
- It is prone to a flux of cosmic background radiation.
- Cosmic Ray Tagging (CRT) system is setup around the ICARUS detector to tag cosmic muons.
- CRT's are plastic scintillators, through which scintillation light is read out by silicon photomultipliers and digitalized by CAEN front end boards.
- CRT's are fully installed and are taking data at ICARUS.
- We can use the CRT to analyze dirt muons produced by neutrino interactions in the materials around the ICARUS building.
- CRT tracks provide both position and angle information for particles which cross the CRT volume. Matching TPC track with CRT tracks can provide high purity samples for detector calibrations.

Figure 1: CRT System Geometry with coordinates

CRT Track Reconstruction

Figure 2: CRT Track reconstruction

- The cosmic muons enter and exit the CRT structure from any 2 surfaces.
- The entry and exit are the 2 hits which are recorded.
- The tracks that the muons take is unknown in the TPC LAr volume.
- The track is reconstructed using a track reconstruction algorithm in CERN ROOT.

CRT Track distribution data

CRT Track Properties

After the reconstruction of the CRT tracks we can use them to study the properties of the cosmic particles.

Fermilab

Longer Track lengths have higher momentum

Fermilab

Angle between x and y direction

Angle between y and z direction

‡ Fermilab

Highlights from the Graphs

- Higher flux of incoming cosmic rays entering from top roofs and existing on the top rims and side CRT walls.
- From the angle graphs, most of the tracks are vertical, least interacting muons.
- θ(φ) is -ve towards west (north) and +ve towards east (south).
- The spikes in the Length graph are unexpected indicating a need to fine tune the algorithm for precision or some unexplored physical conclusions.

Summary and Future Work

- Understanding the various properties of cosmic tracks using CRT track reconstruction.
- Quantify the amounts of tracks crossing the LArTPC which is tagged by the CRT.
- Use the CRT track to calibrate the ICARUS detector.
- Develop an algorithm to match CRT track TPC track to reject cosmics.

Collaborations and References

‡Fermilab

Arizona State University

C. Rubbia, arXiv:1408.6431 (2014)
B. Behera, *PoS* NuFact2021 (2022) 201
https://root.cern/

Acknowledgement

 This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

 I thank Dr Betancourt and Dr Behera for guiding and mentoring me throughout the span of this internship. I was fortunate to have their support which made it an enriching experience for a beginner like me.

