
The Silicon Photomultipliers for FD2-VD

Francesco Terranova on behalf of the PDS Consortium May 3, 2022

The PDS of the Vertical Drift

n Quantity	Detector Surface
s 320 double-side	Cathode plane
320 single-side	Membrane long walls
s 34,560	
s 640	
) 51,200	Cathode plane
51,200	Membrane long walls
s 640	Cathode plane
640	Membrane long walls
I 80	Ŭ
$115 \text{ m}^2 \times 2$	Cathode plane
115 m ² e 14.8% 7.4%	Membrane long walls Cathode plane Membrane long walls
	s 320 double-side 320 single-side s 34,560 s 640) 51,200 51,200 s 640 640 l 80 a 115 m ² \times 2 115 m ² e 14.8%

1/3 of the SiPMs needed for FD1-HD

Ganging twice the SiPMs of FD1-HD (80 versus 48)

General strategy

- Benefit from the two-year long R&D carried out for FD1-HD to deliver customized SiPMs from Hamamatsu (HPK) and Fondazione Bruno Kessler (FBK)
 - Two vendor scheme (reduced risks and costs): we expect 50% of the SiPMs to be produced by HPK and 50% from FBK
 - Cryo-reliability tested in standalone mode using the mass test facility of the Consortium
 - Performance (PDE, dark count rate, cross talk, afterpulse) tested in standalone mode using the facilities of the Consortium
 - Quality assessment during mass production: same principle as FD1-HD (see below)
- Test the VD specific features in Cold Box tests (in progress) and in module-0 (2023)
 - Can we achieve S/N>4 at 1 p.e. with 80 SiPMs in hybrid ganging scheme both for FBK and HPK? (spoiler: yes)
 - Are these sensors appropriate for the use with the Power-Over-Fiber? (spoiler: yes)

The downselected SiPMs: Hamamatsu

In 2019-2021, HPK produced for us four custom sensors and we chose a device that is now called **S13360-9935**

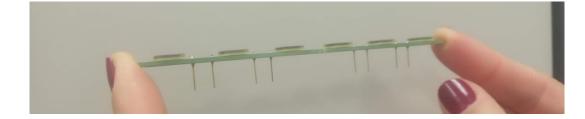
3.1. Structure

Parameter	Rating	Unit
Effective photosensitive area	$6.0(X) \times 6.0(Y)$	mm
Pixel pitch	$75(X) \times 75(Y)$	μm
Number of pixels	6364	pixels
Window	silicone resin	
Window refractive index	1.57	
Package	Surface mount type	

Main features:

- Reliable down to 77 K
- Large cell-pitch
- Low capacitance (1300 pF)
- Operating voltage at 77 K is 45 V (Vbkd+3V)

Parameter	Symbol	Value	Unit	Remark
Operating Temperature	Topr	-196 to +60	°C	No dew condensation. $*2$
Storage Temperature	Tstg	-196 to +80	°C	No dew condensation. $^{\ast}2$
Maximum temperature cycle (below -40°C to room temperature)		10 times		Please avoid rapid temperature change.
Soldering condition	Tsol	240°C peak, 3 times		MSL:5a *3

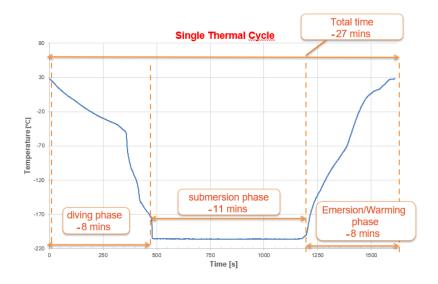

3.2. Absolute Maximum Ratings *1

The downselected SiPMs: FBK

In 2019-2021, FBK produced for us two custom sensors and we chose a product that is now called **NUV-HD-CRYO-TT (Triple Trench)**

Parameter	Rating	Unit
Effective photosensor area	6.0 (X) x 6.0 (Y)	mm
Pixel pitch	50	μm
Window	Epoxy resin	
Package	Surface mount type	

Main features:

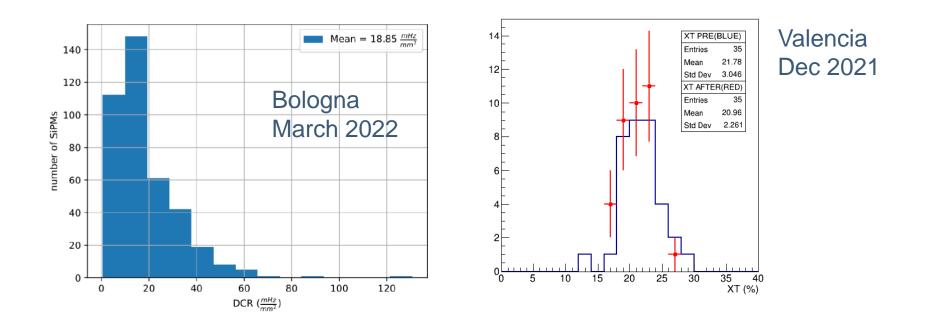

- Reliable down to 77 K
- Moderate cell-pitch
- Low capacitance (2500 pF) [but higher than HPK]
- Very low operating voltage: at 77 K is 31.5 V (Vbkd+4V)

DUNE specs

Spec	Rating	Note
Min PDE at nominal voltage (Vop)	>35% a 450nm	Room temperature (*)
DCR	<200 mHz/mm ²	77 K (**)
Cross talk	<35% at Vop	77 K
Afterpulse	<5% at Vop	77 K
Gain	>2 10 ⁶ at Vop	77 K
Breakdown voltage spread (Vbk)	<200 mV (max-min)	On 160 SiPM group selected by the supplier (***)
Breakdown voltage spread (Vbk)	<2 V (max-min)	whole production

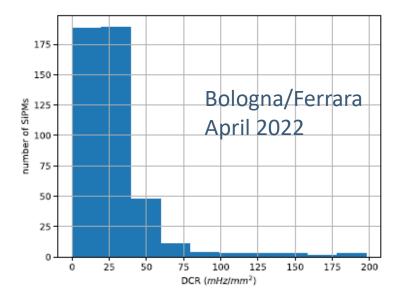
(*) Measured at 77 K In Dec 2021 at TRIUMP: no evidence of change with respect to room temperature [paper in preparation]
(**) Assuming a 1.5 p.e. trigger as for FD1-HD. Actual performance of downselected SiPMs: 60 mHz/mm²
(***) already achieved for FD1-HD

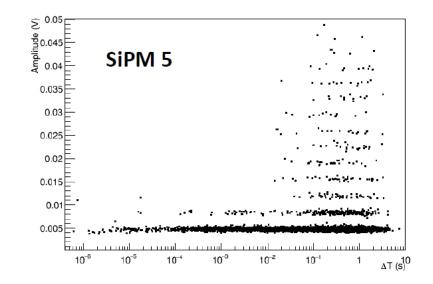
Cryoreliability and characterization



FBK sensors

We tested about 2000 SiPMs:


- Cryoreliability: 99.9% of the sensors OK (2 failures)
- All within specs
- Variation among batches (wafer) does not exceed 1 V: grouping is necessary but can be achieved without special efforts



HPK sensors

We tested about 4000 SiPMs:

- Cryoreliability: 99.95% of the sensors OK (2 failures)
- All within specs
- Variation among batches (wafer) does not exceed 1.5 V: grouping is necessary but can be achieved without special efforts

CIEMAT (Madrid) Apr 2021 + Valencia, Oct 2021

SiPM boards for FD2-VD

FD1-HD: "Rigid" (G10) boards gathering 6 SiPM per boards

FD2-VD: "Flexible" (Kapton) boards gathering 20 SiPM/board

Mounting scheme: tested at FNAL and Milano Bicocca with a standard supplier (SCEN, Trieste, Italy). No issues from the electrical standpoint.

Tested with HPK sensors OK. Planning to install FBK sensors in the next few months. Open issue: should we outsource it to FBK and HPK as done for FD1-HD or we rely on a third party (SCEN) even in the mass production test?

Ganging

In 2022 we addressed a prominent issue:

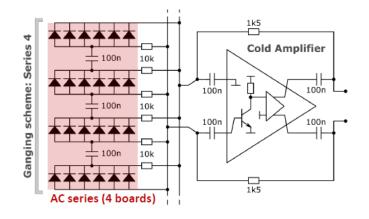
Can we achieve the DUNE specs both with FBK and HPK when ganging in hybrid or conventional mode? This is important because:

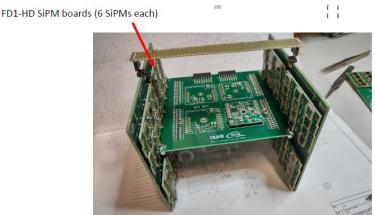
- FBK sensors have a terminal capacitance that is nearly twice the capacitance of HPK
- On the other hand, the FBK SiPMs have a smaller breakdown voltage which eases the operation of the PoF (and reduce costs).

Ideal scenario:

FBK sensors for the cathode tiles

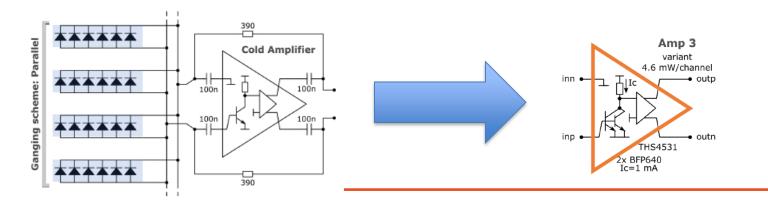
HPK sensors for the membrane tiles where the use of PoF is less critical

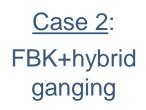

Strategy:

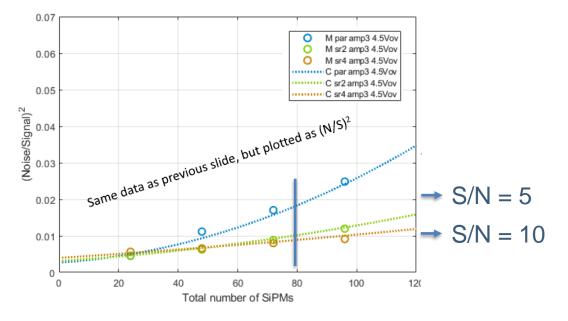

- Perform standalone tests of FBK and HPK SiPMs in ganging mode
- Test the final performance in Module-0 both in cathode and membrane tiles (we will have cathode tiles with both FBK and HPK SiPMs for greater safety)

Results

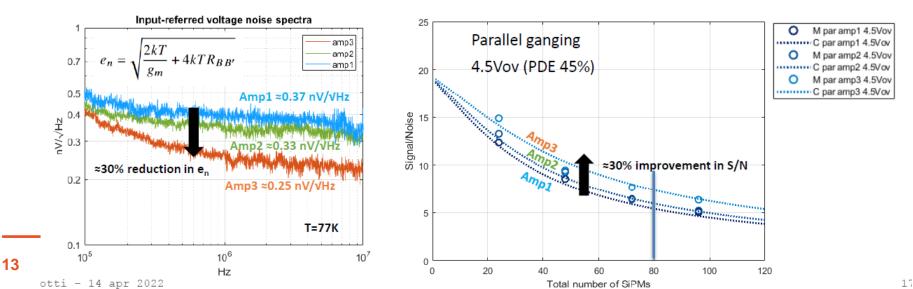
Case 1: HPK (i.e. low capacitance) SiPMs in hybrid ganging scheme. OK – see previous talk


Case 2: FBK (i.e. "high" capacitance) SiPMs in hybrid ganging scheme




Gotti - 14 apr 2022

Case 3: FBK (i.e. "high" capacitance) SiPMs in parallel ganging scheme



Amp3 (variant, 4.6 mW/channel)

Case 3: FBK+parallel ganging

Mass production

- 51200 SiPMs from FBK, 51200 from HPK (+5% spares)
- Production rate (established for FD1-HD): max 4500+4500 per month limited by the number of mass test facilities.
- 1 year production:
 - SiPMs produced and soldered in Kapton boards
 - Tested in 4 mass production centers (most likely: Bologna/Ferrara, Milano-Bicocca, Granada + 1 US). Tests as in FD1-HD:
 - Thermal tests (3 cycles)
 - I-V curve at room and 77 K for all SiPMs
 - Dark Count Rate (DCR), cross talk and afterpulse for 5-10% of the SiPMs

[Need to modify the mass test facilities to handle 20-SiPM flexi boards]

 Delivery to production centers (1 US and 1 EU) in parallel with the SiPM production as soon as the boards are tested

Conclusions

- The FD2-VD SiPM R&D benefited from the 2-year R&D carried out for FD1-HD
- The two-vendor scheme and vendor products are appropriate for the needs of FD2-VD:
 - Hamamatsu S13360-9935 and FBK NUV-HD-CRYO TT fully in specs
- HPK has a lower capacitance but higher V_{bk} than FBK. Hence, the optimal choice should be "HPK for membrane" and "FBK for cathode" tiles but all options are within specs
- Latest ganging studies show that the cold amplifiers of UCSB and Milano-Bicocca work well both with FBK and HPK. Even better (S/N>10) with the hybrid ganging
- Mass production is less challenging than FD1-HD but requires an overhauling of the mass test facilities to cope with the flexi boards