HV Discharge Impact on the FD2 PDS

03 May 2022 DUNE FD2 PDS Preliminary Design Review Ryan Rivera

Cathode HV Discharge Impact

- Will cathode discharges happen? (answer: yes)
- Can a discharge impact the cathode-mounted PD modules? (answer: yes)
- Can the impact be minimized? (answer: yes)

• Approach:

- Two independent simulation studies launched; monthly joint meetings.
 - **BNL**: Sergio Rescia, Veljko Radeka, Bo Yu, Hucheng Chen, et. al.
 - **Fermilab**: Paul Rubinov, Sergey Los, et. al.

FD2 HV System Components

- TPC sensitive volume: 60m x 13m x 13.5m
- The cathode plane: 60m x 13.5m
- The field cage is 13m tall (6.5m double sided drift). Each field cage column (with own resistive divider chain) is ~ 3m (3.4m) wide. The resistance between nodes is 2.5Gohm.
- The anodes (CRPs) are at the top and bottom of the cryostat.
- The nominal cathode voltage is -300kV.

Sergio Rescia, Veljko Radeka, Bo Yu, Hucheng Chen, et. al.

BNL: Voltage Induced on X-ARAPUCA

Ryan Rivera | FD2 PDS PDR | HV Discharge Impact

03 May 2022

FNAL: Voltage Induced on X-ARAPUCA

FNAL: Charge induced

- 1m from Field Cage, the capacitance is about 50pF/m
- The gradient at that point is <100KV/m so ~50KV across PD
- So worst case total charge at an X-ARAPUCA is $(50KV * 25pF/m) = 1.25 \mu C \text{ per X-ARAPUCA}$

Paul Rubinov, et. al.

Matching Results

- BNL and FNAL results are same scale
 - The worst case X-ARAPUCA (1m) fast component (10ns) is...
 - 100 KV/m
 - 20-125 A
 - 0.2-1.25 μC

HV Discharge from a Project Perspective

- During a discharge, there is some risk (worse at the cathode edges) to an X-ARAPUCA with <u>independent power</u>, but it is reasonable to expect that a conservatively shielded design would survive at any location on the cathode.
- During a discharge, there is more risk (still worse at the cathode edges) to X-ARAPUCA with shared/distributed power and signal, but it is reasonable to expect that a conservatively shielded design, with conductive conduits and Balun Box break would survive in the central cathode modules.
- 3. To converge on a conservatively shielded design, at **test benches** we will <u>emulate the cathode</u> <u>discharge</u>, with progressive charge injection approaches, and monitor the system to identify weaknesses in the shielding and to **identify which components are most sensitive**.
- 4. To converge on a final shielded design, at module-0 we will build two shared/distributed power and signal X-ARAPUCA systems (size 3 and 4), and one independently powered X-ARAPUCA, as shown below, and at the **end of the module-0 run, discharges will be induced** from maximum cathode HV.
- 5. The **final shielded design** will be demonstrated in a **cold box run after module-0** and in advance of the Production Readiness Review.

Module-0 cathode topology

- Two <u>shared</u>/distributed power and signal X-ARAPUCA systems (size 3 and 4) connected by Balun box break
- One <u>independently</u>
 powered X-ARAPUCA

	ndent PoF
	Balun box
▋	
	Balun box
	Balun box

Bias Generation downselect

 All bias generation prototypes are targeting July-August '22 Cold Box demonstration in daughter card form-factor.

Conservative Shielding v1

Analysis of Shielding Effect (1 of 4)

• A corner of a TPC with a partial FC wall, two SiPM bands 70cm apart, a portion of the resistive cathode surfaces

Ryan Rivera | FD2 PDS PDR | HV Discharge Impact

Analysis of Shielding Effect (2 of 4)

Capacitance Matrix (reference model)

Maxwell	capaci	tance (F/r	n)			
	FC		SiPM_	L	SiPM_R	Cathode
FC		2.13E-10		-4.03E-12	-8.86E-13	-1.75E-11
SiPM_L		-4.03E-12		2.08E-10	-5.30E-14	-5.92E-13
SiPM_R		-8.86E-13		-5.30E-14	2.09E-10	-4.87E-12
Cathode		-1.75E-11		-5.92E-13	-4.87E-12	9.04E-11

A 300kV swing on FC would inject 1.2uC of charge to 1m long SiPM_L.

A 100kV swing on Cathode would inject 0.5uC of charge to 1m long SiPM_R

As compared to 3nC of charge from SiPMs converting a large event of 2000 photons.

Analysis of Shielding Effect (3 of 4)

• A conductive C-channel (1cmx1cm) is added to shield the SiPM bands

Analysis of Shielding Effect (4 of 4)

Maxwell	сара	citance (F/r	n)			
	FC		SiPM_L	SiPM_R	Cathode	
FC		2.34E-10	-6.00E-15	-8.02E-16	-1.05E-11	
SiPM_L		<mark>-6.00E-15</mark>	2.24E-10	-3.47E-20	-2.20E-16	
SiPM_R		-8.02E-16	-3.47E-20	2.24E-10	<mark>-1.49E-14</mark>	
Cathode		-1.05E-11	-2.20E-16	-1.49E-14	1.19E-10	

A 300kV swing on FC would inject 1.8nC of charge to 1m long SiPM_L.

- Reduction by a factor of >600!

A 100kV swing on Cathode would inject <u>1.5nC</u> of charge to 1m long SiPM_R

- Reduction by a factor of >300!

Conclusion

- Shielding is effective against the HV discharge
 - a. Need to balance against cost, weight, and noise induction.
- We have a clear shielding development plan:
 - a. Downselections based on test stand and Cold Box demonstrations in '22
 - b. Large scale demonstration at module-0
 - System integration
 - Induced cathode HV discharges
 - c. Final packaging demonstrated in Cold Box in '23 in advance of Production Readiness Review