PDS membrane-mount layout optimisation: Optical coverage and light yield simulation studies

In collaboration with: <u>Hamza Amar</u>, Clara Cuesta, Ines Gil, <u>Sergio Manthey</u>, Francio Marinho, Laura Paulucci

Preliminary Design Review of the DUNE FD2-VD PDS June 2022

Michel Sorel

Motivation

- each, for a fixed number of modules: 320 modules on long membrane walls.
 - To first order, light yield results scale with number of XAs
- membrane walls.
- design.

Study in a systematic way the optimal layout of membrane-mount X-Arapucas, 60×60 cm² active area

Study the advantages of an additional (limited, i.e. tens of modules) optical coverage along short

In all cases, the number (**320**) and layout of cathode-mount X-Arapucas is kept fixed to the CDR

What is optimal layout? Figures of merit

- Emphasis in spatial uniformity of PDS response:
 - Average (**LY_avg**) and minimum (**LY_min**) light yield in Z=const. plane near detector center (Z=0). • Goal: high LY_min/LY_avg ratio \rightarrow small LY dependence with X/Y.
 - Dependence of LY_avg (and LY_min) in Z=const. plane as a function of Z near detector border • (Z=25-30 m). Goal: small LY dependence with Z.

Simulation framework

- Standalone Geant4 simulation framework used for this purpose, shooting 175 and 128 nm photons from fixed positions in LAr. No need to use LArSoft for layout optimisation studies.
 - Framework initially developed by L. Paulucci and F. Marinho, later updated at IFIC/CIEMAT.
- 2D LY maps of 400 bins (20x20) in (X,Y) are simulated for Z=const. values between 0 6 m (center) and 25 - 30 m (border).
- 175 and 128 nm LY maps weighted according to expectations for LAr doped with 10 ppm of Xe.

Simulation assumptions

- from ProtoDUNE-DP Xe-doping data (see slides here)
- Light propagation in LAr
 - Absorption length in LAr: 80 m at 175 nm, 20 m at 128 nm
 - Rayleigh scattering length in LAr: ~8.5 m at 175 nm, ~1 m at 128 nm
- **Reflectivity of detector materials**
 - Anode (copper): 0.2 at 175 nm, 0 at 128 nm
 - Field cage (aluminium): 0.7 at 175 and 128 nm •
 - Membrane wall (steel): 0.4 at 175 nm, 0.3 at 128 nm ٠

Geometry: full FD2 geometry simulated, including most relevant detector components from PDS point of view

Light production: 12,700 photons/MeV at 175 nm, plus 7,300 photons/MeV at 128 nm, as inferred at 10 ppm Xe

Light detection: XA collection efficiency of 3% at 175 and 128 nm. Cathode-XA: 2-sided, membrane-XA: 1-sided.

CDR layout results with updated optical simulation assumptions

- LY_avg = 47.22 PEs/MeV, LY_min = 23.81 PEs/MeV \rightarrow LY_min/LY_avg = 0.50.
- Overall light yield dominated by cathode-mount XAs: 77% of total detected light
- LY_min ~ 1 PE/MeV for 2.6% collection efficiency \rightarrow LY_min/LY_avg = 0.05

Vastly better than FD1-PDS, particularly concerning uniformity! From FD1-TDR: LY_avg ~ 20 PEs/MeV,

Summary of alternative membrane-mount layouts explored

- Near detector center (Z = 0-6 m):
 - Optimisation 1: optimal number of X-Arapuca rows in grid layouts
 - Optimisation 2: optimal vertical spacing of grid layouts
 - Optimisation 3: comparison of grid and "pyramidal" layouts
- Near detector borders (Z = 25-30 m):
 - Optimisation 4: addition of X-Arapucas on membrane short walls

Optimisation 1: optimal number of X-Arapuca rows in grid layouts

8x10

- Vertical offset from anode: 0.5 m
- Vertical spacing among rows: 0.8 m
- Horizontal spacing: from 0.75 m (1x80) to 6 m (8x10)

 Notice the change in the field cage profiles (all with the same width, 7.5 mm) for the 8x10 layout.

Optimisation 1: optimal number of X-Arapuca rows in grid layouts

- ٠
- 4x20 layout close to optimal also concerning LY_min (best: 2x40). •

Best LY_avg results for the original 4x20 arrangement of the CDR, instrumenting half of membrane walls.

Optimisation 1: optimal number of X-Arapuca rows in grid layouts

- Best LY_avg results for the original 4x20 arrangement of the CDR, instrumenting half of membrane walls. 4x20 layout close to optimal also concerning LY_min (best: 2x40).
- •

Optimisation 2: optimal vertical spacing of 4x20 layouts

- Keep position of top row fixed, vary vertical spacing and position of three other rows.
- From 0.7 m (min possible) to 1.7 m (max possible) spacing.
- Best results for the original 4x20 arrangement of the CDR, with 0.8 m vertical spacing.

Optimisation 3: comparison of grid and pyramidal layouts

- Pyramidal layout: optical coverage varies gradually with distance from cathode, highest near anode •
- Two pyramidal layouts tried, either covering upper half or all of membrane wall.
- Best: upper half pyramid, four rows of 32+24+16+8 = 80 XAs per quadrant

Upper half pyramid (0.8 m vert. spacing)

Full height pyramid (1.6 m vert. spacing)

Optimisation 3: comparison of grid and pyramidal layouts

- Best pyramid: LY_avg = 46.45 PEs/MeV, LY_min = 22.05 PEs/MeV •
- No improvement over 4x20 grid layout: LY_avg = 47.22 PEs/MeV, LY_min = 23.81 PEs/MeV •

PE per MeV

- from field cage border at Z = 30 m
 - Both LY_avg and LY_min. •
 - Both reference 4x20 arrangement, and alternative pyramidal layout.

• With no optical coverage on short walls, LY drops significantly for Z distances less than a few m away

- from field cage border at Z = 30 m
 - Both LY_avg and LY_min. •
 - Both reference 4x20 arrangement, and alternative pyramidal layout.

PE per MeV

With no optical coverage on short walls, LY drops significantly for Z distances less than a few m away

- **Solution**: limited optical coverage on membrane short walls, if technically possible.
- Two "extended" layouts tried, both involving 4 X-Arapuca rows, as on long sides and at same height: •
 - 4x5 per short side quadrant (80 extra XAs) \rightarrow overcorrecting response near Z = 30 m.
 - 4x3 per short side quadrant (48 extra XAs) \rightarrow configuration close to optimal, shown below. •

- **Solution**: limited optical coverage on membrane short walls, if technically possible.
- Two "extended" layouts tried, both involving 4 X-Arapuca rows, as on long sides and at same height: •
 - 4x5 per short side quadrant (80 extra XAs) \rightarrow overcorrecting response near Z = 30 m.
 - 4x3 per short side quadrant (48 extra XAs) \rightarrow configuration close to optimal, shown below. •

Conclusions on PDS membrane-mount layout optimisation

- is concerned.
 - HV interface: thick field cage profiles can be kept near cathode
- - If technically feasible from cryogenic/HV interfaces point of view
 - Realisation of " 4π coverage" originally envisaged at the time of the FD-VD proposal! •
- Nevertheless, minor changes in detector response are expected after accounting for those.

CDR-style arrangement with 4 rows (0.8 m vertical separation) \times 20 columns (3 m horizontal separation) per long quadrant is close to optimal for 320 membrane-mount X-Arapucas, as far as detector response

• To avoid response degradation in last few meters near borders, limited coverage of short membrane walls with 4 rows \times 3 columns per short quadrant (\rightarrow 48 extra X-Arapucas) would be highly beneficial

These are conceptual layouts that will need to be adapted to mechanical constraints (\rightarrow next talk).

