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RUN 1 PMSSM SCANS
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e ATLAS and CMS sampled 19 parameters of

pPMSSM to find mod
e Manually inspectec

els that were not excluded.

models that survived.

= Some survived d

ue to long cascades and

compressed spectra.
= Cumbersome to really understand what
region of observable space the models end

up in.



SURVIVING MODELS IN RUN 1

e CMS interpretation of surviving models: averages of observables for surviving models.
e Good idea but still difficult to interpret.
= Common problem: too many dimensions and models for us to digest.
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CLUSTERING

e Clustering groups similar data points in a high-
dimensional space.
= Various distance quantities can be used to

determine whether points are close.

e Clustering algos are unsupervised learning
algorithm: no labels needed.

e Several flavors exist: k-means, hierarchical,
density based, etc.
= For now considering k-means.




SKETCH OF CLUSTERING WORKFLOW
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k-MEANS

Used k-means clustering: minimizes the within-cluster variance.

k-means doesn't give you the number of clusters (k). You have to specify the number.

= But we of course don't know k: loop over k and determine which is best.

Common figure of merit for which k is best: gap statistic.

» gap statistic compares clusters from data with clusters from uniform pseudodata.

= For gap stat: k for which gapy-(gapis1-0x+1) > 0 is optimal.

= More info on gap statistic is here and on an alternative (gap®) is here.

There is no absolute "right" £.

= Just as when designing signal regions, one could use more or less bins in, for example, MET
with varying but similar significance.

= Our aim is to identify rough regions in observable space: corresponds to larger bins that we
can study further.


https://rss.onlinelibrary.wiley.com/doi/10.1111/1467-9868.00293
https://core.ac.uk/download/pdf/12172514.pdf

TEST: CLUSTERING SIMPLIFIED MODEL
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SET UP

Used signal grid similar to what was used in ATLAS tt+E%liSS search (but reproduced the samples with
MG+Pythia+Delphes due to holes in grid).

No preselection applied and used simple input variables: MET, HT, leading four jet pTs, jet multiplicity
Inputs were scaled to have range from 0 to 1 for all samples together (individual signal points could
have different ranges).

» Leaving the shapes as-is.

Clustered using all events.

Clustered using averages — thus you have one value per variable per signal grid point.

= Helps makes this more easily scalable if we have 10* to 10° models.

Best clusters chosen to show results:

= Best means cluster with highest signal efficiency for that model.

= This canresultin clusters that are never the best... not a problem we justignore these.



GAP STATISTIC: GAP;-(GAP1-0%+1)
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Best k is where gapy-(gapi+1-0r+1) > 0 with o = error on the gap stat.

Thisoccursatk = 4 (k = 15) for event (average) info but gapy-(gapi+1-0x+1) doesn't actually change much
afterk ~ 3.



RESULTS: DIVISION OF SIMPLIFIED GRID

Full eventinfo,k = 3 Averages, k = 3
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Reasonable grouping of points similar to what was done manually



TECHNICAL NOTES: SCALING

Using minibatch k-means: cluster on subset of data and update as you go through full dataset.
= No problems with loading all the data to memory (a challenge with the pMSSM ntuples).
Converting ntuples to scikit-learn friendly format needs to be scaled. Currently load full data set into
memory which is not feasible for pMSSM.
Preprocessing needs to work in batches. Will look for a way to do this.
= Current 0-1 scaling is easy to implement but other methods more robust to outliers might
require work.
Calculating average (for input to k-means) could be done with ROOT quite easily.



TECHNICAL NOTES: PREPROCESSING

e Currently scaling dimensions to have range 0-1.
= Not robust against outliers (do we really care about ©O(10) outliers in signal?)
= Considering quantile scaler (make data uniform in all dimensions).
e k-means is not optimal when mixing input types (continuous vs n_bjets, n_leptons, etc. which is
more like categorical data). Maybe try k-mediods.
= Not really a problem when using averages since discrete variables become more
continuous.



R&D: DIMENSIONALITY REDUCTION

| e The data has low-level (particle momenta),
| correlated features.

| e Higher dimensionality reduces power of

| clustering.

i e Would like to have an algorithm construct

pertinent features of data set in an unsupervised
manner.

e Autoencoders can reduce dimensionality of
observable space.

il 1 DECODER e Apply clustering (e.g., k-means) in lower

dimension (latent) space.

Output Layer




AUTOENCODER PRELIMINARY RESULTS
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e Considered both a 1D and 2D latent space.
= However, 2D space was just a line.

e Trained on full grid of samples.

e Couldn't apply clustering but visually inspecting latent
space showed expected separation of samples.

e Training was a bit unstable: network sometimes learned
the means (due to using MSE loss).



CONCLUSION/NEXT STEPS

e k-means with gap yields reasonable results for a simplified model grid.
= Both with full event info and averages (averages makes processing much easier).
= The division of the stop grid is sensible and does not have to "optimal”
e Depending on the scale and output format of the Snowmass pMSSM scan, some technical work may
be needed.
= Ntuple conversion to scikit-learn friendly format. Chunking into memory.
» Preprocessing (scaling from 0-1 or quantile scaling) in chunks.
o 0-1scalingis trivial to scale.



BACKUP



GAP STATISTIC
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Best k is where gap(k)-[gap(k+1)+o(k+1)] > 0 with o = error on the gap stat.




GAP STATISTIC: DIFF

Full event info, bestk = 7 Averages, best k = 8
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Best k is where gap(k)-[gap(k+1)+o(k+1)] > 0 with o = error on the gap stat.



GAP™ STATISTIC

Full event info, bestk = 1

Averages, best k = 3
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