Energy reconstruction tuning for FD-VD

Wenjie Wu (UCI)

March 14, 2022

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Kinematics-based method

- ν_e CC energy: divide event into reconstructed shower with highest charge and hadronic energy
- ν_{μ} CC energy: divide event into longest reconstructed track and hadronic energy
- Hadronic/Electron energy: electron lifetime (wire-by-wire) and recombination (constant) corrected calorimetric energy

 $E_{\nu} = E_{\text{lep}}^{\text{cor}} + E_{\text{had}}^{\text{cor}}$

Kinematics-based method

Electron shower energy

Calorimetric energy calibrated with MC

Muon momentum (Longest track contained)

By track range, calibrated by MC

Muon momentum (Longest track exiting) By multi-Coulomb scattering, calibrated by MC

Hadronic energy

By reconstructed hits not in the muon track or electron shower, calibrated by MC

DUNE-doc-2278 by Nick Grant et al

ν_{μ} CC events with contained track

Fid_Cut

ν_{μ} CC events with contained track

Muon track length V.S. Muon momentum

Fid_Cut abs(nuvtxx_truth) < 300. abs(nuvtxy_truth) < 680. nuvtxz_truth > 40. nuvtxz_truth < 850.

ν_{μ} CC events with exiting track

MCS momentum V.S. True momentum

Wenjie Wu (UCI)

Fid_Cut abs(nuvtxx_truth) < 300. abs(nuvtxy_truth) < 680. $nuvtxz_truth > 40.$ nuvtxz_truth < 850.

ν_{μ} CC events with exiting track

Muon MCS momentum V.S. Muon momentum

Wenjie Wu (UCI)

Fid_Cut abs(nuvtxx_truth) < 300. abs(nuvtxy_truth) < 680. nuvtxz_truth > 40. nuvtxz_truth < 850.

Parameters	Current Value (for HD)	Tuned value
GradTrkMomRange	431.0	412.0
IntTrkMomRange	-40.7	-28.25
GradTrkMomMCS	0.89	1.093
IntTrkMomMCS	0.20	0.074
GradNuMuHadEnCont	0.76	0.554
IntNuMuHadEnCont	-0.07	-0.069
GradNuMuHadEnExit	0.86	0.532
IntNuMuHadEnExit	-0.08	-0.039

Neutrino energy

Energy resolution

ν_{μ} CC events with contained track

Lepton momentum

Hadronic energy

Wenjie Wu (UCI)

ν_{μ} CC events with contained track

Wenjie Wu (UCI)

ν_{μ} CC events with contained track

Neutrino energy

ν_{μ} CC events with exiting track

Lepton momentum

Hadronic energy

Wenjie Wu (UCI)

ν_{μ} CC events with exiting track

True v_{μ} energy [GeV]

DUNE

Wenjie Wu (UCI)

ν_{μ} CC events with exiting track

Reco shower energy V.S. True shower energy

Wenjie Wu (UCI)

Fid_Cut abs(nuvtxx_truth) < 300. abs(nuvtxy_truth) < 680. nuvtxz_truth > 40. nuvtxz_truth < 850.

Reco shower energy V.S. True shower energy

Fid_Cut abs(nuvtxx_truth) < 300. abs(nuvtxy_truth) < 680. $nuvtxz_truth > 40.$ nuvtxz_truth < 850.

Parameters	Current Value (for HD)	Tuned value
GradShwEnergy	0.985	0.987
IntShwEnergy	-0.02	0.049
GradNuEHadEn	0.62	0.428
IntNuEHadEn	0.02	0.051

Next steps

- The energy dependence of resolution for ν_e CC is similar to HD
- Contained ν_{μ} CC has larger resolution w.r.t higher energy
 - Large bias/residual for both lepton and hadronic energy reconstruction
- Exiting ν_{μ} CC has better uniformity than contained events
- Will study the correlation with lepton directions

CC events with exiting track

ν_e CC events

ν_e CC events

