

Vertical Drift Studies

Nitish Nayak 14th Feb, 2022

Fiducial Volume Cut

- HD takes a fiducial volume as ~ 70 cm from the boundary walls
 - bool isFid = (fabs(vtx.X())<310 && fabs(vtx.Y())<550 && vtx.Z()>50 && vtx.Z()<1244)</p>
- We want to do something similar for VD so the equivalent cut becomes
 - bool isFid = (fabs(vtx.X())<300 && fabs(vtx.Y())<680 && vtx.Z()>40 && vtx.Z()<850)</p>
- - MCC11
- VD training/validation/test samples (Smaller Stats) : ~550k, ~70k, ~70k
- VD training/validation/test samples (Full Stats) : 1.5 million, ~85k, ~85k
- My HD training/validation/test samples : ~530k, 66k, 66k
- Original training had ~3.2 million events so almost 2x the current statistics

• Also processed the horizontal drift files in the original 1D simulation, similar to what was used in the training before.

Recap on Results

CVN VD (Smaller Stats)

	precision	recall	f1-score	support
CC Numu	0.87	0.90	0.89	18715
CC Nue	0.86	0.88	0.87	18625
CC Nutau	0.50	0.32	0.39	4506
NC	0.87	0.90	0.88	27786
accuracy macro avg	0.78	0.75	0.85 0.76	69632 69632
weighted avg	0.85	0.85	0.85	69632
INFO:root:fla	vour confusion	matrix	(rows = p	redicted classes, cols = actual classes)
[[16874 312 [274 16332 [246 650 [1321 1331	942 1227] 1121 1158] 1441 532] 1002 24869]]			

- CVN HD is my training on MCC11 files w/ similar statistics as VD
- CVN HD Old is applying the <u>old trained model</u> in the CVN paper from Leigh and Saul on the MCC11 HD dataset
 - Can easily imagine ~2-3 points in precision/recall coming from more training statistics

			CVN ł	HD		
	precision	recall	f1-score	support		
CC Numu	0.87	0.92	0.90	18541		
CC Nue	0.88	0.88	0.88	18060		
CC Nutau	0.46	0.27	0.34	4503		
NC	0.86	0.89	0.87	25456		
accuracy	,		0.85	66560		
macro avg	g 0.77	0.74	0.75	66560		
weighted ave	g 0.84	0.85	0.85	66560		
[[17089 30 [157 1581 [294 46 [1001 147	06 1077 1063 16 964 1030 52 1229 679 76 1233 22684					
	precision	recall	f1-score	support		
CC Numu	0.91	0.93	0.92	18541		
CC Nue	0.90	0.92	0.91	18060		
CC Nutau	0.54	0.33	0.41	4503		
NC	0.88	0.91	0.90	25456		
accuracy			0.88	66560		
macro avg	0.81	0.77	0.78	66560		
weighted avg	0.87	0.88	0.88	66560		
INFO:root:fla	vour confusio	on matrix	(rows = p	redicted cla	sses, cols =	actual class

[[17291 151 858 719] [181 16667 958 700] [220 272 1477 765] [849 970 1210 23272]]

Recap on Results

- Comparing the 3, it seems VD and HD are close whereas "HD Old" outperforms them both
- extrapolated total POT from there nuTauCC background approximately halved from before

• POT Normalization approximately, ran over 2000 events for each swap (numuCC, nueCC, nutauCC) and

Recap on Results

- and HD

• For efficiency and purity numbers, after approximate POT normalisation, I get ~80% efficiency and purity for both VD

• For HD old, its 86% and 88% (eff, purity) respectively — which is pretty close to what they report in the paper (NB : they report it wrt reco energy since at nueCC peak, high energy NCs dominate background, not 2-4 GeV NCs like here)

Full Stats Training

 Training still going on, showing results for converging

• Training still going on, showing results for trained model at epoch 11.. seems to be close to

Full Stats Training

CVN VD (Smaller Stats)

	precision	recall	f1-score	support	
CC Numu	0.87	0.90	0.89	18715	
CC Nue	0.86	0.88	0.87	18625	
CC Nutau	0.50	0.32	0.39	4506	
NC	0.87	0.90	0.88	27786	
accuracy			0.85	69632	
macro avg	0.78	0.75	0.76	69632	
weighted avg	0.85	0.85	0.85	69632	
INFO:root:fl	avour confusion	matrix	(rows = pr	redicted c	lasses, cols = actual classes):
[[16874 31]	2 942 1227]				
[274 1633	2 1121 1158]				
[246 65	0 1441 532]				
[1321 133	1 1002 24869]]				

- Improvement from before, not a whole lot. Mainly in the nutauCC predictions
- Does do a little better differentiating nueCCs/numuCCs from NC

CVN VD (Full Stats)

	prosie	ion		f1	aussast				
	precis	100	recall	ri-score	support				
CC Numu	ø	.89	0.91	0.90	22762				
CC Nue	0	.86	0.91	0.89	22606				
CC Nutau	0	.53	0.36	0.43	5389)			
NC	0	.90	0.89	0.89	33211				
accuracy				0.87	83968	}			
macro avg	0	.80	0.77	0.78	83968				
weighted avg	0	.86	0.87	0.86	83968				
INFO:root:fla	vour co	nfusion	matrix	(rows =	predicted	classes,	cols =	actual	class
[[20826 273	997	1315]							
Γ 347 20536	1449	1464]							
[330 613	1957	768]							
F 1250 1104	0.96	2066477							

NueCC

• Distributions with "dumb" oscillation weights + pot normalised

NueCC

- Eff, Purity numbers after optimised CVN cut based on FOM (82%, 81%)
- Better than before but not as good as the HD numbers

NumuCC

• Distributions with "dumb" oscillation weights + pot normalised

NumuCC

• Eff, Purity numbers after optimised CVN cut based on FOM - (94%, 93%)

NC

• Distributions with "dumb" oscillation weights + pot normalised

NC

• Eff, Purity numbers after optimised CVN cut based on FOM - (91%, 91%)

Summary

- Raw network performance for VD seems to be stabilised a little bit behind the old HD trainings
 - Biggest difference in efficiency and purity numbers for nueCCs
 - Not very far off but enough to matter?
 - the large sample seems to come in the nuTauCC classification
- numbers
- Obviously lot is different in the new simulation. Any thoughts about this drop?

• Hard to say how much more we can squeeze out of it, unfortunately the biggest improvement from

• Can look at training using wire cell deconvolve charge inputs/sim channels to set upper bounds on these

