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| FLASH | NGLS
Frequency (MHz) 3900 3900
Design gradient (MV/m) | 14 14
# Cavities 4 47
Total Voltage (MV) 20 207
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Figure 3: The first linearization of the longitudinal phase
space measured with a TDS. Without and with applying
16 MV 3.9 GHz voltage and a BC2 energy near 150 MeV.

Figure: Transverse deflecting structure measurement of longitudinal
phase space, before and after applying 3rd harmonic cavity voltage.
(E. Vogel et al., IPAC 2010.)
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m We're using FNAL's 3.9 GHz cavity as the basis for our

FNAL design. Some of this material will look familiar.

Experience

m Lots of good input already from E. Harms, H. Edwards,
M. Foley, and others on FNAL institutional experience.
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m Short bunches — more HOM concerns (c.f. J. Byrd's
talk).

: m CW operation requires high-performance input, HOM
NGL! . .
Challenges coupling solutions.
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Harmonic m Small beampipe — coupler kicks. See Figure.
Cavity

) m Tight squeeze in the FLASH cryomodules means they had
Sowring some difficulty in resolving this problem.

m FNAL's institutional experience with industry-fabricated
couplers is useful here.

m Recent interest in waveguide alternatives to coaxial
coupling.

FLASH 3.9 GHz cavity string
AR g —a LA nrnnrnAg e e ~rrA p—a L BnrnnnnnAg

XFEL 3.9 GHz cavity string
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Figure: E. Vogel et al., SRF 2007.
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m The HOM spectrum is

being studied using the [ o SR o S o G

ACE3P code package e Aeii
(Omega3P, T3P). AT Y A

m We estimate ~ 10% of
HOM power dissipated
above 100 GHz.

m How to model accurately
at > THz frequencies?
Code + broadband
impedance estimates.

AR SRS S

Modeling
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Figure 6: Magnitude of electric field from OMEGA3P
simulations for the 5" dipole band. The 9.061 GHz mode
is a trapped mode and that at 9.062 GHz is an inter-cavity
mode.

Modeling

Figure: 1.R.R. Shinton et al., IPAC 2011: Eigenmode simulation of
third harmonic cavity string.
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m FLASH relied on
preexisting coaxial coupler
design. No opportunity for
waveguide coupler R&D. . 1o M

m Two-leg formteil design N\ 2 \
very difficult to weld.

(Stress fractures, see next M L '
Fi 4: Different HOM ler designs. Calculated
o s|ide_) FNAL recommends fields on lhel:l-pxe':)i‘; e
HOM
Conptars a 1l-leg design.

Figure: T. Khabibouline et al.,
PAC 2007.
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Valuable input from FNAL on technical challenges:
m E-beam welding from various labs, vendors
m Nb, sapphire material quality control

m ES&H coordination during cryomodule assembly

FNAL:
Lessons
Learned
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