NUINT12 Generator comparisons Introduction

Steve Dytman Univ. of Pittsburgh

- significant effort by Sobczyk, Gallagher, Hayato-san organizing and calculating
- experiments make suggestions
- organizers, Nathan Meyer, Tomasz Golan put together comparisons THANKS!!

Basic outline

- Hugh Gallagher organized NUINT04
- SD and Steve Boyd organized theory/generator comparison for NUINT09. Roman Tacik and Jan Sobczyk had big impact getting final results together.
 - Coherent models out of date
 - QE models remarkably together for inclusive, but not for proton (right before MEC became important)
 - Pion production models vary widely
- This time, get ideas from experiments
 - MINOS, MiniBooNE, T2K, NOvA, LBNE– oscillation, cross section
 - ArgoNEUT, MicroBooNE Liquid Ar test, cross section
 - MINERvA cross section

Categories

- Oscillation backgrounds (NC π^0)
- QE-like cross section (common oscillation signal)
- Coherent cross section (important osc bkgd)
- FSI issues (strongly affects, 'masks' all signals)
- Total Visible Energy (oscillation signal, E_v measurement)
- Experimenters are welcome to include their own thoughts

I. Oscillation backgrounds in $v_{\mu} \rightarrow v_{e}$.

LBNE 2012 simulate (\bar{v})

- NOVA A1: EM fraction for NC 2 GeV v_{μ}/\overline{v} C
 - EM fraction = summed γ and π^0 energy/ $\nu [\nu = E_{\nu} E_{\mu}]$
- MINOS B1: π^0 from NC 5 GeV ν_{μ} Fe
 - > $z=E_{\pi}/v$., i.e. fraction of hadron energy in π^{0} 's.
- LBNE C1: total CC xs for 0-10 GeV $v_{\mu}/\overline{v_{\mu}}$ Ar?
 - total and no meson contribution (QE bkgd)
- thoughts:
 - Good general interest, involves processes not well understood
 - γ 's from decays ok, but γ 's from nuclear excitations?
 - Many sources of π^{0} 's DIS, RES

NC π^0 issues

T2K 2011 result used empirical estimation of bkgd.

- build events from atmospheric π^0 and MC $\pi^{+/-}$. Use regular analysis. v., induced NC single π⁰
- normal MC not trusted.
- MINOS used MC simulation.

NUINT12 generator comparisons 22 October 2012

2.5-

GENIE

MiniBooNE

II. QE-like background

Difficult to define QE signal

- Only detect muon, strong bkgd from pion prod
- Proton gives clean ID, but has strong FSI which is hard to model
- Biggest problem seems to be pion abs, satisfies many cuts but gives wrong E_v with QE hypothesis.
- MEC makes it more difficult.
- example shows QE/RES

 GeV ν_µ C simulation.
 Width of QE peak shows
 Fermi motion and blue
 line shows π prod events
 Where no pion is emitted.

- MiniBooNE F1: total CC QE xs w/ and w/o MEC.
 - GENIE has draft version, NEUT has no MEC
- > T2K G1: mu momentum vs. θ (2D) plot for 600 MeV ν_{μ} C with and without MEC
- plots below from GENIE (see Teppei Katori's talk later)
- thoughts:
 - Frontier of theory vs. data lots of attention needed

NUINT12 generator comparisons 22 October 2012

III. FSI influences

- examples from NUINT09 study [v_{μ} Carbon at 1 GeV]
- proton KE from QE (left), π KE from CC1 π (right)
- Theorists have little or no FSI, generators have full FSI.
- > All curves in right plot except purple have full FSI.

III. FSI influences

- Much of my time has gone to this (GENIE has 2 models)
- One effort has been to model low energy nucleons, best seen in data with neutrons in final state.

• LBNE C2: look at proton multiplicity (all and with KE>50 MeV – common tracking problem) in 2.5 GeV v_{μ} Ar.

No data so far, looking forward to ArgoNEUT this week.

- ArgoNEUT/MiniBooNE D1, E1: proton multiplicity (all and with KE>50 MeV) for 1, 3 GeV ν_{μ} Ar events with no mesons.
- thoughts:
 - \blacktriangleright Correct vertex energy changes $E_{\rm v}$ calculation, new access with LAr
 - Large variations possible, need validation with neutrinos.

IV. Coherent xs

SCIBooNE NC Coherent (Phys Rev D 81, 111102(R) (2010))

leV/c

- measurement depends critically on MC understanding of bkgd and signal.
- efficiency=5.3%, purity=61%

			2		Data
Interaction Type	# Events F	$\operatorname{raction}(\%)$	80		NCπ ⁰
CC quasi-elastic	53,363	41.4	َ س 100		
CC single π via resonances	29,688	23.1	je.		Int. BG with π⁰
CC coherent π	1,771	1.4	_ If		
CC single meson except π	839	0.7	ш⊢		Int. BG without π ⁰
CC DIS	6,074	4.7	F		D 14
NC elastic	22,521	17.5	-		Dirt
NC single π^0 via resonances	6,939	5.4	-		
NC coherent π^0	1,109	0.9	L.		
NC single meson except π^0	4,716	3.7	0		
NC DIS	1,768	1.4	ŏ		500
				Reconstructed 1	π°momentum (MeV/c)

• MINERvA H3-5: isolated pion energies for 5 GeV v_{μ} C.

- π^+ (CC Coh signal), π^0 (NC Coh signal), π^- (similar to π^+ in Minerva)
- sources are RES, DIS in addition to coherent
- since coherent is few% of RES, cuts are critical

NUINT12 generator comparisons 22 October 2012

V. Total visible energy (MINOS)

NUINT12 generator comparisons 22 October 2012

V. Total visible energy (MINERvA)

- MINERvA composed of Scin, ECal, and HCal regions.
- Key to E_v calculation for higher energies.
- Sensitive to missing energy of neutrals, low E hadrons.

Studies

- > MINOS B2: " E_{reco} " from CC 3 GeV v_{μ} Fe
 - $E_{reco} = 1.3 * E_{\gamma,\pi0} + KE_p (KE > 150 MeV ? KE : 0) + KE_n (KE > 300 ? 0.5 * KE : KE) + E_{\pi+/-...}$
 - Specific to their calorimeter (Fe-scin)
- ArgoNEUT/MiniBooNE D3, E3: total visible energy 1, 3 GeV ν_{μ} Ar (no ν , neutrons)
 - more general
- MINERvA H17, H18: distribution of n, p energy as function of v. for 5 GeV v_µ C.
 - shows variation in E_{vis} due to low vs. high energy p,n (FSI)
- Thoughts:
 - Tricky to interpret because many components.
 - D plots have more information

Summary

Introduction to studies suggested by experiments.

Many interesting themes

- oscillation backgrounds
- QE signal/bkgd (osc signal)
- FSI effects (low energy nucleons)
- coherent backgrounds
- total visible energy (osc signal, common way to calc E_v)
- Now, let's see the results! What to look for:
 - Each plot shows a quantity expt sees as important bkgd/syst
 - Look for deviations between MC codes
 - Look for physics that might cause those deviations.
 - If MC's agree, is that because they all use same model?