

CC-Inclusive Cross Section measured with the T2K Near Detector

Alfons Weber University of Oxford & STFC/RAL

For the T2K Collaboration

Content

- The T2K Experiment
 - Producing Neutrinos
 - ND280 the near detector
- Selecting Events
- Cross Section Extraction
- Results
- Outlook & Conclusion

The T2K Experiment

- Neutrino Beam from j-parc
 - Beam power 50 190 kW
- Detector 280m from target
 - Run 1&2 analysed (2010/11)
 - 1.43x10²⁰ p.o.t. (this analysis) / 3.01x10²⁰ p.o.t. (now)
 - 5% of expected total

Producing Neutrinos

NA61/SHINE

- hadron(π , K) yield - 30 GeV p + C
- High-acceptance

 ToFs and spectrometers
- 2cm thin target $(4\% \lambda_{\rm I})$
- π^+ analysis:
 - dE/dx only analysis low momenta (Phys.Rev.C84.2011.034604)
 - dE/dx+ToF analysis high momenta (Phys.Rev.C85.2011.035210)

$$\sigma(p)/p^2 \approx 2 \times 10^{-3}, \ 7 \times 10^{-3}, \ 3 \times 10^{-2} (\text{GeV/c})^{-1}$$

for $p > 5, \ p = 2, \ p = 1 \text{ GeV/c}$
$$\sigma(\text{dE/dx})/\langle \text{dE/dx} \rangle \approx 0.04$$

$$\sigma(\text{TOF-F}) \approx 115 \text{ ps}$$

$$\boxed{\frac{\sigma(dE/dx)}{dE/dx + \text{TOF}}} = \frac{1}{10} \frac{1}{10}$$

- ν_μ fluxes in analysis region dominated by pion decays
 – Kaons important in tail
- $\nu_{\rm e}$ flux in analysis region dominated by muons
 - From decay chain
 - Primary pions modelled with NA61 data

ND280 detector

- 0.2 T magnet (recycled from UA1)
- Plastic scintillator detectors:
 - Fine Grained Detector (FGD)
 - 1.6 ton fiducial mass for analysis
 - π^0 detector (P0D)
 - ECals and SMRD
- Time projection chambers (TPC)
 - <10% dE/dx resolution</p>
 - 10% momentum res. at 1GeV/c
- Analysis use ν $_{\mu}\text{-}\text{CC}$ event rate in FGD1

F٧

A.Weber, Nulnt2012

CC Interaction

- Good data quality
- At least one negative track in TPC
- Track starts in fiducial volume of FGD
- dE/dx compatible with muon
- No significant activity upstream of FV

- Simple selection
- Little reconstruction efficiency for backward or high angle tracks
- Largely independent of signal composition

Cross Section Formalism

• Flux averaged differential Cross Section

- Complications
 - True energy and momentum are unknown
 - Background in sample
- Solution
 - Subtract background
 - "unfold" limited resolution in momentum and angle

Bayesian Unfolding

Migration Matrix

Systematic Uncertainties

P_{μ} (GeV/c)	$\cos \theta_{\mu}$	algo.	ϕ	X-S	det.	FSI	syst	stat	tot
	P	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
[0.0, 0.4]	[-1, 0]	0.53	11.40	17.99	2.13	0.46	21.43	2.04	21.53
	[0, 0.84]	0.62	12.79	5.52	3.65	1.21	14.49	4.95	15.31
	[0.84, 0.90]	0.26	13.13	10.76	2.73	1.41	17.28	9.52	19.72
	[0.90, 0.94]	1.21	14.05	10.73	5.02	3.55	18.78	12.26	22.42
	[0.94, 1]	0.22	14.03	12.94	4.94	2.97	19.96	14.72	24.80
[0.4, 0.5]	[-1, 0]	1.32	11.98	39.47	2.72	0.87	41.38	3.19	41.50
	[0, 0.84]	0.17	11.39	5.69	1.30	0.34	12.83	4.20	13.50
	[0.84, 0.90]	0.01	11.36	4.99	1.01	0.42	12.48	8.61	15.16
	[0.90, 0.94]	0.82	11.66	5.38	1.28	0.51	12.97	10.08	16.43
	[0.94, 1]	0.55	13.11	7.19	2.27	0.92	15.19	11.74	19.19
[0.5, 0.7]	[-1, 0]	0.63	12.60	46.13	1.86	0.42	47.87	8.48	48.62
	[0, 0.84]	0.33	11.13	3.79	1.09	0.37	11.84	3.78	12.43
	[0.84, 0.90]	0.41	10.85	3.44	0.82	0.30	11.45	6.18	13.02
	[0.90, 0.94]	0.48	11.01	5.73	0.81	0.35	12.48	7.28	14.45
	[0.94, 1]	0.52	11.64	11.45	1.09	0.28	16.39	7.91	18.20
[0.7, 0.9]	[-1, 0]	3.63	13.53	148.34	1.97	0.57	149.02	32.74	152.57
	[0, 0.84]	0.59	11.38	3.17	1.10	0.41	11.91	5.07	12.95
	[0.84, 0.90]	0.56	10.92	5.88	0.83	0.20	12.47	6.84	14.22
	[0.90, 0.94]	0.31	10.72	11.13	1.05	0.46	15.52	7.68	17.32
	[0.94, 1]	0.19	11.00	17.59	0.93	0.39	20.79	6.97	21.93
[0.9, 30.0]	[-1, 0]	-	-	-	-	-	-	-	-
	[0, 0.84]	0.20	11.88	5.61	1.37	0.63	13.26	5.44	14.33
	[0.84, 0.90]	0.03	11.34	2.49	0.87	0.25	11.68	5.85	13.06
	[0.90, 0.94]	0.18	11.13	2.27	0.71	0.36	11.42	5.18	12.54
	[0.94, 1]	0.20	10.93	2.31	0.75	0.26	11.24	2.93	11.61

Differential Cross Section

T: Target, FSI: Final State Interaction det.: detector, x-s: cross-section, algo: unfolding algorithm

Total Cross Section

data

A.Weber, Nulnt2012

T2K has presented its first cross section measurement
 CC Inclusive

$$\langle \sigma_{\rm CC} \rangle_{\phi} = (6.93 \pm 0.13(stat) \pm 0.85(syst)) \times 10^{-39} \frac{\rm cm^2}{\rm nucleons}$$

- Systematically limited
- Significant improvements are possible
 - Reduced flux systematics
 - Increased acceptance
 - Larger data set
 - Exclusive channels & model studies
 - Using water target

Backup

Flux Systematics

sources	Max. Error	Min. Error	Norm. Error		
	(%)	(%)	(%)		
Kaon	16.7	0.4	0.8		
Pion	6.1	0.6	5.0		
Proton beam	5.1	0.2	1.1		
Off-axis angle	5.4	0.1	1.6		
Horn ang. align.	1.0	0.2	0.5		
Horn field assym.	6.7	0.01	0.3		
Cross-sec. production	7.8	4.5	6.4		
Horn abs. current	1.9	0.4	0.9		
Target align.	2.6	0.05	0.2		
Sec. nucl. production	8.5	2.9	6.9		
Total	19.6	8.9	10.9		

bin 0-10 : ND280 V_{μ} bin 11-12: ND280 anti- V_{μ} bin 13-19: ND280 V_{e} bin 20-21: ND280 anti- V_{e}

bin 22-32: SK V_{μ} bin 33-34: SK anti- V_{μ} bin 35-41: SK V_{e} bin 42-43: SK anti- V_{e} Flux error matrix

Cross Section Systematics

$P_{\rm c}$ (GeV/c)	$\cos\theta_{\rm e}$	M^{QE}_{i}	M^{RES}	$n\pi^{shp}$	SF	Pe	ΔW	ndd	$1\pi^{shp}$	total
I_{μ} (GeV/e)	$\cos v_{\mu}$	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
[0 0 0 4]	[-1 0]	13 44	1.04	3 22	8.68	2.99	3.03	0.29	3.92	17.35
[0.0, 0.1]	[0, 0.84]	1.53	0.77	2.06	0.63	0.71	0.85	0.62	2.38	3.85
	[0.84, 0.90]	6.69	1.10	0.93	2.43	0.34	0.97	3.44	4.51	9.27
	[0.90, 0.94]	5.00	1.35	2.83	1.03	1.48	0.63	0.88	4.04	7.45
	[0.94, 1]	2.56	1.20	2.41	3.70	2.14	0.29	1.42	4.56	7.41
[0.4, 0.5]	[-1,0]	33.69	0.60	4.06	18.75	6.17	0.52	0.68	1.37	39.30
	[0, 0.84]	3.33	0.47	1.57	3.29	0.84	0.13	0.60	0.37	5.09
	[0.84, 0.90]	3.48	0.63	0.65	0.81	0.57	0.61	0.45	0.75	3.88
	[0.90, 0.94]	1.78	0.45	2.51	2.38	3.94	0.96	0.83	0.24	5.70
	[0.94, 1]	1.91	1.16	3.80	1.55	1.83	0.51	0.27	0.28	5.06
[0.5, 0.7]	[-1,0]	38.70	2.18	2.48	10.33	5.91	0.84	1.84	0.88	40.69
	[0, 0.84]	2.74	0.39	0.97	1.59	0.56	0.77	0.09	0.04	3.47
	[0.84, 0.90]	1.18	0.54	1.33	0.49	0.23	0.64	0.19	0.47	2.10
	[0.90, 0.94]	1.07	0.53	1.00	5.71	0.19	0.16	0.12	0.41	5.94
	[0.94, 1]	1.27	0.62	2.84	9.20	1.68	0.79	0.97	0.53	9.97
[0.7, 0.9]	[-1, 0]	159.27	2.04	0.19	15.91	4.68	3.42	3.99	0.70	160.23
	[0, 0.84]	1.69	0.06	0.15	0.35	0.37	0.68	0.58	0.47	2.04
	[0.84, 0.90]	1.34	0.90	1.12	4.28	0.77	0.81	0.30	0.26	4.86
	[0.90, 0.94]	1.59	0.81	0.97	10.44	0.63	1.36	0.08	0.41	10.74
	[0.94, 1]	1.40	0.90	2.06	16.61	1.86	1.10	0.32	0.84	16.99
[0.9, 30.0]	[-1, 0]	-	-	-	-	-	-	-	-	-
	[0, 0.84]	2.58	0.91	0.68	1.56	0.09	0.31	0.28	0.35	3.27
	[0.84, 0.90]	1.45	0.27	0.17	0.82	0.24	0.08	0.06	0.45	1.77
	[0.90, 0.94]	0.91	0.05	0.20	0.60	0.39	0.36	0.11	0.02	1.24
	[0.94, 1]	1.13	0.13	0.34	1.36	0.33	0.12	0.11	0.33	1.88

Detector Systematics

$P_{\mu} (\text{GeV/c})$	$\cos \theta_{\mu}$	Pscale	Qconf	sandmu	Pdist	OOFV	PiAbs	fgdTpcEff	fgdM	total
	-	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
[0.0, 0.4]	[-1, 0]	0.31	0.59	0.27	0.37	1.88	0.63	0.81	2.29	
	[0, 0.84]	1.56	0.31	0.12	0.90	3.39	0.57	0.64	3.95	
	[0.84, 0.90]	1.17	0.23	0.12	0.75	2.30	0.38	0.45	2.76	
	[0.90, 0.94]	1.33	0.29	0.68	0.87	4.29	0.46	0.54	4.68	
	[0.94, 1]	1.42	0.32	0.42	0.97	4.14	0.43	0.49	4.56	
[0.4, 0.5]	[-1, 0]	0.70	0.57	0.35	0.59	2.27	0.63	0.80	2.74	
	[0, 0.84]	0.18	0.22	0.03	0.67	1.04	0.39	0.48	1.41	
	[0.84, 0.90]	0.45	0.12	0.04	0.46	0.56	0.20	0.23	0.91	
	[0.90, 0.94]	0.56	0.11	0.14	0.61	0.90	0.21	0.24	1.28	
	[0.94, 1]	0.89	0.22	0.13	0.94	1.99	0.37	0.42	2.45	
[0.5, 0.7]	[-1, 0]	0.11	0.56	0.43	0.59	1.28	0.57	0.77	1.85	
	[0, 0.84]	0.33	0.19	0.03	0.49	0.67	0.33	0.40	1.05	
	[0.84, 0.90]	0.06	0.10	0.03	0.28	0.55	0.20	0.22	0.70	
	[0.90, 0.94]	0.08	0.10	0.15	0.40	0.53	0.19	0.23	0.76	
	[0.94, 1]	0.22	0.12	0.19	0.43	0.71	0.23	0.27	0.96	
[0.7, 0.9]	[-1, 0]	0.28	0.53	0.20	1.02	0.91	0.34	0.56	1.64	
	[0, 0.84]	0.55	0.18	0.08	0.63	0.65	0.28	0.37	1.18	
	[0.84, 0.90]	0.17	0.12	0.02	0.71	0.36	0.24	0.26	0.89	
	[0.90, 0.94]	0.09	0.12	0.05	0.77	0.30	0.22	0.22	0.90	
	[0.94, 1]	0.10	0.10	0.03	0.51	0.36	0.18	0.19	0.70	
[0.9, 30.0]	[-1, 0]	-	-	-	-	-	-	-	-	
	[0, 0.84]	0.58	0.26	0.07	0.58	0.82	0.24	0.37	1.27	
	[0.84, 0.90]	0.30	0.19	0.10	0.43	0.41	0.19	0.28	0.78	
	[0.90, 0.94]	0.16	0.22	0.05	0.41	0.31	0.17	0.24	0.66	
	[0.94, 1]	0.07	0.39	0.12	0.25	0.27	0.19	0.26	0.64	