Inelastic Scattering in eA and the Measurement of R = σ_L/σ_T

Eric Christy Hampton University

Nulnt12, October 26, 2012

From the perspective of a nuclear physicist:

 \rightarrow Electromagnetic and weak probes are complementary for studying nucleon structure.

 \rightarrow neutrino scattering is uniquely sensitive to flavor and valence structure from combining proton, neutron, v and vbar data.

→ electron data provides important constraints on Vector form factors and structure functions, which are crucial input for modeling neutrino cross sections

10/26/12

E. Christy, NuInt12, Rio

Charged lepton scattering:

$$\frac{\mathrm{d}^2 \sigma^{e^{\pm} p}}{\mathrm{d}x \mathrm{d}y} = \frac{4\pi \alpha^2 s}{Q^4} \left[(1-y) F_2(x,Q^2) + y^2 x F_1(x,Q^2) \right]$$

$$F_2 = (F_L + 2xF_1)/(1+v^2/Q^2), R = F_L/2xF_1$$

Neutrino scattering:

$$\begin{aligned} \frac{d^2 \sigma^{\nu(\overline{\nu})}}{dx dy} &= \frac{G_F^2 M E}{\pi} \Big(\Big[1 - y(1 + \frac{Mx}{2E}) + \frac{y^2}{2} \\ &\times \Big(\frac{1 + (\frac{2Mx}{Q})^2}{1 + \mathcal{R}} \Big) \Big] \mathcal{F}_2 \pm \Big[y - \frac{y^2}{2} \Big] x \mathcal{F}_3 \Big) \end{aligned}$$

R is difficult to measure in neutrino scattering and R_A for nuclear targets at low Q^2 and W is not really known.

10/26/12

Estimate of σ_v uncertainty on R

(from Arie Bodek, based on quark-parton model)

With $\langle \mathcal{R} \rangle = 0.2$ and $\langle f_{\bar{q}} \rangle = 0.1725$, we obtain $\langle \sigma_{\bar{\nu}} / \sigma_{\nu} \rangle = 0.487$, which is the world's experimental average value in the 30-50 GeV energy range. The above expressions are used to estimate the systematic error in the cross section originating from uncertainties in \mathcal{R} and $f_{\bar{q}}$ (as shown in Table 3).

source	change (error)	$\frac{\text{change}}{\ln \sigma_{\nu}}$	$\begin{array}{c} { m change} \\ { m in} \ \sigma_{ar{ u}} \end{array}$	$\frac{\text{change}}{\ln \sigma_{\bar{\nu}}/\sigma_{\nu}}$
R	+0.10	-2.0%	-4.0%	-2.1%
$f_{\bar{q}}$	+10%	-1.4%	+2.8%	+4.2\$
$P(K_{sea}^{axial})$	+ 0.3	+1%	+2%	+1.0%
N	+3%	+3%	+3%	0
Total		$\pm 4.0\%$	$\pm 6.1\%$	$\pm 4.8\%$

Want to know R to +- 0.025 to reduce error to 1%

<-----Sea antiquarks <----Axial sea

<---- R

--PDF normalization quark versus gluon

Error in R leads to large error in the antineutrino cross sections from the inelastic part.

Above does not include error from EMC effect/shadowing, or axial valence. Or resonances and QE components of F2.

10/26/12

Measurements of Structure functions are Critical for a full understanding of QCD

→ Approximate scaling of F_2 with Q^2 provided verification of proton constituents, carrying longitudinal Momentum fraction x.

→ R = $\sigma_L / \sigma_T < 1$ provided evidence that charged constituents were spin 1/2.

→ Scaling violations measured over orders of magnitude in x and Q^2 well described by universal set of parton distribution functions (PDFs) within pQCD.

 $\mathbf{F}_{\mathbf{L}}$ data is relatively sparse and much less precise.

10/26/12

Evolution governed by perturbative QCD

Single quark scattering (LO)

$$F_{2}(x,Q^{2}) = x \Sigma \mathbf{e}_{q}^{2} \mathbf{q}(x,Q^{2})$$
$$\left| \sum_{q} \right|^{2}$$

 $F_L = 0 \Rightarrow F_2 = 2xF_{1'}R = 0$: No transverse quark momentum

=> transverse momentum and F_L,
 *F_L directly sensitive to the gluon, g(x).

$$F_L(x,Q^2) = \frac{\alpha_s(Q)}{2\pi} x^2 \int_0^1 \frac{dy}{y^3} \left(\frac{8}{3}F_2(y,Q^2) + \sum_{i=1}^{2f} e_j^2(y-x)g(y,Q^2)\right) + \dots$$

10/26/12

E. Christy, NuInt12, Rio

Scattering with longitudinal photons

 $Q^2 \rightarrow \infty$, $F_L \rightarrow 0$ (helicity conservation – spin ½ quarks, no transverse momentum) $Q^2 \rightarrow 0$, $F_L \rightarrow Q^4$ (current conservation)

10/26/12

How to separate transverse from longitudinal?

- \rightarrow need 1-2% uncertainties pt-pt in ϵ to provide 15-20% $\delta R (\delta F_L/F_L)$
- \rightarrow also requires multiple beam energies and spectrometer settings for multiple ϵ .

Very challenging experimentally!

10/26/12

Status of \mathbf{F}_{L} proton data

→ Nearly all experiments (with exception of HERA H1 / Zeus) has deuterium data.

 \rightarrow Good coverage in x below Q²~40 GeV/c²

→ New HERA (H1 shown + Zeus) data at small x and JLab at low Q² large x(mainly resonance region at 6 GeV)

Phenomena of Quark-Hadron Duality

➢ First observed by Bloom and Gilman At SLAC ~1970, prior to development of QCD.

Phys.Rev.Lett.25:1140,1970.

Noted that resonances oscillate around a 'scaling' curve at all Q².
 hadrons follow the DIS scaling behavior.

Novel observation that was generally left unstudied for next 30 years. Now observed in a range of observables at JLab... eg. spin structure functions.

10/26/12

Lots of new L/T data from Jlab Hall C

Experiment	target(s)	W range	Q ² range	Status
E94-110	р	RR	0.3 - 4.5	nucl-ex/0410027
E99-118	p,d	DIS+RR	0.1 - 1.7	PRL98:14301
E00-002	p,d	DIS+RR	0.25 - 1.5	Publication in progress
E02-109	d	RR+QE	0.2 - 2.5	Finalizing analysis
E06-009	d	RR+QE	0.7 - 4.0	Publication in progress
E04-001 - I	C,Al,Fe	RR+QE	0.2 - 2.5	Finalizing analysis
E04-001 - II	C,Al,Fe	RR+QE	0.7 - 4.0	Publication in progress

Lots of results expected soon!

10/26/12

E94-110: proton F_L in resonance region

 \rightarrow ~200 individual L/T separations.

 \rightarrow Among most precise ever performed.

 \rightarrow First observation of quark-hadron duality in F_{L} .

While resonance structure is clearly observed, resonance dips and peaks oscillate about scaling curve describing DIS.

 pQCD curves from MRST2004 and Alekhin parton distribution function (PDF) fits +TM.

Measurements of the Transverse and Longitudinal Structure Functions in Electron Scattering on Nuclear Targets

"

V. Mamyan,²⁷ A. Ahmidouch,²² I. Albayrak,¹¹ J. Arrington,¹ A. Asaturyan,³¹ A. Bodek,²⁴ P. Bosted,²⁹ R. Bradford,^{24,1} E. Brash,³ A. Bruell,⁵ C Butuceanu,²³ M. E. Christy,¹¹ S. J. Coleman,²⁹ M. Commisso,²⁷ S. Connell,⁹ M. M. Dalton,²⁷ S. Danagoulian,²² A. Daniel,¹² D. Day,²⁷ S. Dhamija,⁷ J. Dunne,¹⁸ D. Dutta,¹⁸ R. Ent,⁸ D. Gaskell,⁸ A. Gasparian,²² R. Gran,¹⁷ T. Horn,⁸ Liting Huang,¹¹ G. M. Huber,²³ C. Jayalath,¹¹ M. Johnson,^{1,21} M. Jones,⁸ N. Kalantarians,¹² A. Liyanage,¹¹ C. Keppel,¹¹ E. Kinney,⁴ Y. Li,¹¹ S. Malace,⁶ S. Manly,²⁴ P. Markowitz,⁷ J. Maxwell,²⁷ N. N. Mbianda,⁹ K. S. McFarland,²⁴ M. Meziane,²⁹ Z. E. Meziani,²⁶ G. B Mills,¹⁵ H. Mkrtchyan,³¹ A. Mkrtchyan,³¹ J. Mulholland,²⁷ J. Nelson,²⁹ G. Niculescu,¹⁰ I. Niculescu,¹⁰ L. Pentchev,²⁹ A. Puckett,^{16,15} V. Punjabi,²⁰ I. A. Qattan,¹³ P. E. Reimer,¹ J. Reinhold,⁷ V. M Rodriguez,¹² O. Rondon-Aramayo,²⁷ M. Sakuda,¹⁴ W. K. Sakumoto,²⁴ E. Segbefia,¹¹ T. Seva,³² I. Sick,² K. Slifer,¹⁹ G. R, Smith,⁸ J. Steinman,²⁴ P. Solvignon,¹ V. Tadevosyan,³¹ S. Tajima,²⁷ V. Tvaskis,³⁰ G. R. Smith,⁸ W. Vulcan,⁸ T. Walton,¹¹ F. R. Wesselmann,²⁰ S. A. Wood,⁸ and Zhihong Ye¹¹ (The JUPITER Collaboration Jlab E02-109, E04-001, E06-009)

A number of neutrino physicists involved in these measurements

10/26/12

E. Christy, NuInt12, Rio

L/T Separations on d, C, Al, Cu, Fe

<u>2007</u>

10/26/12

Deuteron F_L and Moments (E02-109, E06-009)

10/26/12

E. Christy, NuInt12, Rio

Study of deuteron F_L, and separation of singlet and non-singlet (p-n) moments – E02-109, E06-009

Dissertation of I. Albayrak (Hampton, 2011)

• Extend resonance L/T separations to deuteron.

◆Allow study quark-hadron duality for neutron in both transverse and longitudinal structure.

• Allow higher precision non-singlet moment extractions for F_2 , F_1 (compare to lattice predictions at $Q^2 = 4 \text{ GeV}^2$).

• Comparisons of F_{L}^{p} and F_{L}^{d} (F_{I}^{n}) and moments.

E. Christy, NuInt12, Rio

 F_L^d results from E06-009

F^d_L integrand of CN moment

- → Subtract Quasi-elastic contribution from Hall C data using fit.
- → Include SLAC data
- \rightarrow Next, correct for Fermi smearing.

10/26/12

Fermi Corrected F^d_L**integrand**

10/26/12

F_L (**R**) in Nuclei

*Well known since the EMC experiment that the nuclear medium modifies nucleon structure functions.

→ However, after 25 years the mechanism is *still* not fully understood.

→ Is the effect different in F_1 and F_2 ?

* The latter \Rightarrow nuclear dependence of R and F_{L} !

Important to know if A dependence exists in F_{L} for full understanding of EMC effect.

10/26/12

Highest precision data on R_A comes from SLAC E139/E140

→ SLAC analysis showed no clear evidence for $R_A \neq R_d$... However Re-analysis of L/T separations (P. Solvignon, J. Arrington, D. Gaskell, ArXiv:0906.0512) including neglected Coulomb effects for electron entering and exiting nucleus

Following Dasu *et.al* Analysis of SLAC (PRD.49.5641)

Preliminary results from JLab E06-109(D), E04-001 (A)

A consistent Picture seems to be emerging...

Evidence that $R_A < R_d$ for $1 < Q^2 < 5$ and moderate to large *x*.

Further investigation forthcoming

 \rightarrow Anticipate publication of R (F₁) results from 2007 data

this year focusing on $2 < Q^2 < 4$.

→ Anticipate publication of full data set including 2005 low Q^2 data early 2013 for 0.25 < Q^2 < 4.

10/26/12

One of the extremely useful Off-shoots of this work is global fits

→ Global fits to cross sections / structure functions were performed
For ra>diative corrections and bin-centering corrections.

 \rightarrow nucleon structure function (F1p, F2p, FLp, F1n) were determined from fits to proton and deuteron data.

→ QE contribution determined from either sampling wf momentum
 Distribution (D2) or using Super-scaling formalism of Donnelly-Sick
 (A > 2)... See talk by M. Barbaro..

10/26/12

E. Christy, NuInt12, Rio

Resonance Proton fit M.E.C. and P.E. Bosted, PRC 81,055213

D_2 (n) fit

- \rightarrow In published version Rd = Rp is assumed.
- \rightarrow Only F1n is parameterized.
- → Both proton and neutron elastic form factors are taken from fit
 by P. Bosted. New fits to larger data set are now available.
- \rightarrow Smearing is done by sampling momentum distribution from Paris wf

D_{2} (n) fit comparison to E06-009

10/26/12

D₂ (n) fit QE comparison to E06-009

→ Replaced QE smearing with convolution model of W. Melnitchouk.
 → Will study with different potentials & off-shell effects, including BONUS n
 → Replaced p,n form factors with modern parameterizations including new GMN data from CLAS. (biggest contribution to difference)

10/26/12

E. Christy, NuInt12, Rio

A>2 fit

→ For QE use superscaling formalism of Sick, Donnelly, Maieron (nucl--th/0109032)

$$\frac{d^2\sigma}{d\Omega d\omega} \frac{1}{\sigma_{Mott}} \epsilon \left(\frac{q}{Q}\right)^4 = \epsilon R_L(q,\omega) + \frac{1}{2} \left(\frac{q}{Q}\right)^2 R_T(q,\omega) \qquad \qquad f_{L,T} \equiv k_F \frac{R_{L,T}}{G_{L,T}}$$

→ Developed by Peter Bosted and tuned by Vahe Mamyan for E04-001.
→ uses nucleon fits by by Bosted and Christy as input and Fermi smears for nuclear targets using FG.

→ nuclear modifications to inelastic structure functions are determined from fit parameters.

 \rightarrow Uses existing world data.

Comparison to selected E04-001 data

Preliminary E04–001, E = 1.204, $\Theta = 70.011$ Relative Cross section $Q^2 = 1.0 (GeV/c)^2$ Total 300 $\varepsilon = 0.44$ QE Inelastic $R_{\tau} = 1.35$ TE 250 QE transverse **QE** Longitudinal 200 150 100 50 0.4 0.8 1.2 0.6 1 1.4 1.6 1.8 $W^2(GeV^2)$

Preliminary E04–001, E = 4.629, $\Theta = 10.661$

10/26/12

E. Christy, NuInt12, Rio

Bosted-Mamyan fit

Extracting Transverse enhancement at Q²>0.3 GeV2

In order to fit the data on nuclear targets we find that a <u>TE component is</u> <u>needed</u>.

We take the TE component from the fit, Integrate up to $W^2 = 1.5$, and extract $R_T(Q^2)= (QE_{trans} + TE)/QE_{trans}$

Assign a conservative systematic error to R_T (since some of the transverse excess may be produced with final state pions)

(In future we plan to improve it with updated L-T separated data from E04-001)

Primary purpose of this preliminary fit was as input to radiative corrections.

A spinoff of the fit is the TE component versus Q2

$$\mathcal{R}_T = rac{QE_{transverse} + TE}{QE_{transverse}}$$

Preliminary E04-001, E = 4.629, Ø = 10.661

10/26/12

→ Include TE in vector form factors => predict neutrino cross section

$$\begin{split} G_{Mp}^{nuclear}(Q^2) &= G_{Mp}(Q^2) \times \sqrt{1 + AQ^2 e^{-Q^2/B}} \\ G_{Mn}^{nuclear}(Q^2) &= G_{Mn}(Q^2) \times \sqrt{1 + AQ^2 e^{-Q^2/B}}. \end{split}$$

A. Bodek, H. Budd, M.E.C., Eur.Phys.J.C71:1726,2011 (arXiv:1106.0340)

10/26/12

E. Christy, NuInt12, Rio

- \rightarrow TE resolves most of tension between high and low E_udata.
- \rightarrow Enhancement is relative to independent nucleon FG, whether Underlying physics is MEC or not.

10/26/12

- → Lots of new JLab results for F_L and R for nucleons and nuclei with publications coming very soon.
- \rightarrow Fits available which describe the data to few % on average
- \rightarrow Plenty of physics studies coming in the future

Stay tuned....

And Thank You!

10/26/12

E. Christy, NuInt12, Rio

Backup Slides

10/26/12

E. Christy, NuInt12, Rio

but additional contributions at finite Q², e.g.

Kinematic 'Target Mass' Corrections':

Fractional nucleon momentum carried by the struck quark away from Bjorken limit

 $\begin{aligned} \xi &= 2x/(1+r) \\ F_2^{TM}(x,Q^2) &= \frac{x^2}{r^3} \frac{F_2^{(0)}(\xi,Q^2)}{\xi^2} + 6\frac{M^2}{Q^2} \frac{x^3}{r^4} \int_{\xi}^1 dx' \frac{F_2^{(0)}(x',Q^2)}{x'^2} + 12\frac{M^4}{Q^4} \frac{x^4}{r^5} \int_{\xi}^1 dx' \int_{x'}^1 dx'' \frac{F_2^{(0)}(x'',Q^2)}{x''^2} \\ \\ \end{array} \\ \end{aligned}$ What experiments measure 'Massless' limit described by PDFs Geogi, Politzer / Barbieri, et.al, '76

Higher Twist contributions (H-T):

Quark-Quark correlations: eg. gluon exchange between struck and spectator quarks.

Suppressed as powers of 1/Q²

10/26/12
Q-H duality: comparisons to empirical DIS fits

- F_2 ALLM fit to F_2 H.Abramowicz and A.Levy, et.all., hep-ph/9712415

- R_{1998} to $R = \sigma_L / \sigma_T$ K. Abe et.al Phys.Lett.B452:194-200,1999

<u>Observations</u>

As Q² increases, different resonance peak and valleys pass through x=0.6

=> Averaging over a range in Q^2 at fixed xeffectively averages out the variations due to the resonance contribution to the structure function.

Can we use this to provide DIS-like data?

F_L^p results from TMC unfolding procedure

(MEC, J. Blumlein, H. Bottcher - in preparation)

Use to \rightarrow test pQCD evolution of extracted $F_{L2}^{(0)}$

 \rightarrow Further duality studies using as 'scaling' curve

10/26/12

New HERA F data at low x

→ Lowering of beam energy during Last years of HERA allowed L/T separations to be performed by both H1 and ZEUS.

 \rightarrow provides important constraint on g(x).

10/26/12

E. Christy, NuInt12, Rio

Can significantly increase Q^2 Accessible for $F_{\rm L}$ at 11 GeV JLab

10/26/12

E. Christy, NuInt12, Rio

F₂ Structure Function allows study of pQCD

New data from EO2-109, EO6-009, and EOO-002 will help resolve these open questions. 10/26/12 42

E00-002 Results

Preliminary results for F^p_L Consistent with resonance global fit.

Results for deuteron and $R_d - R_p$ coming soon.

F_L, R on Deuterium and heavier targets JLab Hall C: E02-109, E04-001, E06-009

Global status of the Proton F_L data

10/26/12

Unfolding TM Contributions from data

$$F_2^{TM}(x,Q^2) = \frac{x^2}{r^3} \frac{F_2^{(0)}(\xi,Q^2)}{\xi^2} + 6\frac{M^2}{Q^2} \frac{x^3}{r^4} \int_{\xi}^1 dx' \ \frac{F_2^{(0)}(x',Q^2)}{x'^2} + 12\frac{M^4}{Q^4} \frac{x^4}{r^5} \int_{\xi}^1 dx' \int_{x'}^1 dx'' \ \frac{F_2^{(0)}(x'',Q^2)}{x''^2} \\ F_1^{TM}(x,Q^2) = \frac{x}{r} \frac{F_1^{(0)}(\xi,Q^2)}{\xi} + \frac{M^2}{Q^2} \frac{x^2}{r^2} \int_{\xi}^1 dx' \ \frac{F_2^{(0)}(x',Q^2)}{x'^2} + \frac{2M^4}{Q^4} \frac{x^3}{r^3} \int_{\xi}^1 dx' \int_{x'}^1 dx'' \ \frac{F_2^{(0)}(x'',Q^2)}{x''^2} \\ F_1^{TM}(x,Q^2) = \frac{x}{r} \frac{F_1^{(0)}(\xi,Q^2)}{\xi} + \frac{M^2}{Q^2} \frac{x^2}{r^2} \int_{\xi}^1 dx' \ \frac{F_2^{(0)}(x',Q^2)}{x'^2} + \frac{2M^4}{Q^4} \frac{x^3}{r^3} \int_{\xi}^1 dx' \int_{x'}^1 dx'' \ \frac{F_2^{(0)}(x'',Q^2)}{x''^2} \\ F_1^{TM}(x,Q^2) = \frac{x}{r} \frac{F_1^{(0)}(\xi,Q^2)}{\xi} + \frac{M^2}{Q^2} \frac{x^2}{r^2} \int_{\xi}^1 dx' \ \frac{F_2^{(0)}(x',Q^2)}{x'^2} + \frac{2M^4}{Q^4} \frac{x^3}{r^3} \int_{\xi}^1 dx' \int_{x'}^1 dx'' \ \frac{F_2^{(0)}(x'',Q^2)}{x''^2} \\ F_1^{TM}(x,Q^2) = \frac{x}{r} \frac{F_1^{(0)}(\xi,Q^2)}{\xi} + \frac{M^2}{Q^2} \frac{x^2}{r^2} \int_{\xi}^1 dx' \ \frac{F_2^{(0)}(x',Q^2)}{x'^2} + \frac{2M^4}{Q^4} \frac{x^3}{r^3} \int_{\xi}^1 dx' \int_{x'}^1 dx'' \ \frac{F_2^{(0)}(x'',Q^2)}{x''^2} \\ F_1^{TM}(x,Q^2) = \frac{x}{r} \frac{F_1^{(0)}(\xi,Q^2)}{\xi} + \frac{M^2}{q^2} \frac{x^2}{r^2} \int_{\xi}^1 dx' \ \frac{F_2^{(0)}(x',Q^2)}{x'^2} + \frac{2M^4}{Q^4} \frac{x^3}{r^3} \int_{\xi}^1 dx' \int_{x'}^1 dx'' \ \frac{F_2^{(0)}(x'',Q^2)}{x''^2} \\ F_1^{TM}(x,Q^2) = \frac{x}{r^2} \frac{F_1^{(0)}(\xi,Q^2)}{\xi} + \frac{F_1^{(0)}(\xi,Q^2)}{q^2} + \frac{F_1^{(0)}(\xi,Q$$

Parameterize $F_{2,L}^{M=0}(x,Q^2)$ and fit $F^{TM}_{2,L}(x,Q^2)$ to world data set => determine TMCs directly from data.

- Not a perturbative expansion
- Assume that higher twist operators obey same formalism.

Proton charged lepton data on F_2 and F_1 fit for $0.3 < Q^2 < 250$ and $x > 1x10^{-4}$

10/26/12

E. Christy, NuInt12, Rio

Scattering of virtual photons from nucleons

10/26/12

E. Christy, NuInt12, Rio

Duality Averaging Procedure for proton F,

Averaging over bite in Q² effectively averages over resonances.

Can use fit to do averaging and correct with data where available.

For F_2 resonance average is very close to DIS fit!

F₂ fit results

10/26/12

E. Christy, NuInt12, Rio

Are the CN moments of data what should be compared to pQCD?

n pQCD
$$M_2^{(n)}(Q^2) = \int dx \, x^{n-2} F_2^{(0)}(x)$$

This is **not** true for finite M²/Q² due to TMCs. However, *Nachtmann* (1973) found a way to project out the massless limit contribution via

$$M_L^{(n)}(Q^2) = \int_0^1 dx \, \frac{\xi^{n+1}}{x^3} \left\{ F_L(x,Q^2) + \frac{4M^2 x^2}{Q^2} \frac{(n+1)\xi/x - 2(n+2)}{(n+2)(n+3)} F_2(x,Q^2) \right\}$$
(1)

- \rightarrow Here F_2 , F_L are the *experimental* structure functions.
- → Nachtmann moment effectively removes the TM contributions.

10/26/12

E. Christy, NuInt12, Rio 50

How do we determine the Proton F_L Nachtmann Moments?

Bin data in fine *x* bins over (0.01 < x < 1).

Utilize resonance and DIS fits to interpolate between data points, where necessary.

Determine uncertainties in moments from uncorrelated uncertainties by generating 1000 'pseudo' data sets with individual F_L values randomly sampled within uncorrelated uncertainties.

→ produces set of 1000 moment values with uncorrelated uncertainty given width of distribution.

* Nachtmann F_L moment requires F_2 moments be determined.

Results for Proton F_L Nachtmann Moments

P. Monaghan, A. Accardi, M.E.C, C.E. Keppel, W. Melnitchouk, L. Zhu

Cornwall-Norton Moments of F_{L}

Moments of the Structure Function

$$M_n^{2,L}(Q^2) \equiv \int_0^1 dx \ x^{n-2} \ F_{2,L}(x,Q^2)$$

$$M^1_n(Q^2) \ \equiv \ \int_0^1 \ dx \ x^{n-1} \ F_1(x,Q^2).$$

If $n = 2 \rightarrow Bloom-Gilman duality integral!$ (integral of DIS or resonance curve is the same)

Operator Product Expansion $M_n(Q^2) = \sum (nM_0^2/Q^2)^{k-1}B_{nk}(Q^2)$ higher twist pQCD

K=1 term is twist-2, eg free partons

→ Duality is described in the Operator Product Expansion as higher twist effects being small or cancelling - DeRujula, Georgi, Politzer (1977)

 \rightarrow The determination of structure function moments allow us to study the transition of QCD from asymptotic to confinement scales..

Charged lepton scattering:

$$\frac{d^2 \sigma^{e^{\pm}p}}{dxdy} = \frac{4\pi\alpha^2 s}{Q^4} \left[(1-y) F_2(x,Q^2) + y^2 x F_1(x,Q^2) \right]$$

$$F_2 = (F_L + 2xF_1)/(1+v^2/Q^2), R = F_L/2xF_1$$

Neutrino scattering:

$$\begin{split} \frac{d^2 \sigma^{\nu(\overline{\nu})}}{dx dy} &= \frac{G_F^2 M E}{\pi} \Big(\Big[1 - y(1 + \frac{Mx}{2E}) + \frac{y^2}{2} \\ & \times \Big(\frac{1 + (\frac{2Mx}{Q})^2}{1 + \mathcal{R}} \Big) \Big] \mathcal{F}_2 \pm \Big[y - \frac{y^2}{2} \Big] x \mathcal{F}_3 \Big) \end{split}$$

R is difficult to measure in neutrino scattering and $\mathrm{R}_{_{\!A}}$ for nuclear

targets at low Q^{z} and W is not really known.

10/26/12

E. Christy, NuInt12, Rio

Γ	Experiment	target(s)	W range	Q ² range	Status
	E94-110	р	RR	0.3 - 4.5	nucl-ex/0410027
	E99-118	p,d	DIS+RR	0.1 - 1.7	PRL98:14301
	E00-002	p,d	DIS+RR	0.25 - 1.5	Publication in progress
	E02-109	d	RR+QE	0.2 - 2.5	Finalizing analysis
	E06-009	d	RR+QE	0.7 - 4.0	Publication in progress
	E04-001 - I	C,Al,Fe	RR+QE	0.2 - 2.5	Finalizing analysis
	E04-001 - II	C,Al,Fe	RR+QE	0.7 - 4.0	Publication in progress

One of the extremely useful Off-shoots of this work is global fits

 \rightarrow Global fits to cross sections / structure functions were performed For radiative corrections and bin-centering corrections.

 \rightarrow nucleon structure function (F1p, F2p, FLp, F1n) were determined from fits to proton and deuteron data.

→ QE contribution determined from either sampling wf momentum
Distribution (D2) or using Super-scaling formalism of Donnelly-Sick
(A > 2)... See talk by M. Barbaro..

10/26/12

E. Christy, NuInt12, Rio

24

-Numbers given are for one year of running

-Line shows the W2=4 mark, formal res-dis regions

- Bin data in fine *x* bins over (0.01 < x < 1).
- Utilize resonance and DIS fits to interpolate between data points, where necessary.
- Determine uncertainties in moments from uncorrelated uncertainties by generating 1000 'pseudo' data sets with individual F_L values randomly sampled within uncorrelated uncertainties.
 - → produces set of 1000 moment values with uncorrelated uncertainty given width of distribution.
- * Nachtmann F_L moment requires F_2 moments be determined.

10/26/12

51

