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Nuclear Interactions� v = v0(static) + vp(momentum dependent) → v(OPE) fits large NN

database with χ2
≃ 1� NN interactions alone fail to predict:

1. spectra of light nuclei

2. Nd scattering

3. nuclear matter E0(ρ)
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Proton-Deuteron Elastic Scattering

Ermisch et al. (KVI collaboration) (2005) and Kalantar-Nayestanaki, private communication

V 2π only resolves some of the problems above . . .
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Beyond 2π-exchange

Pieper and Wiringa, private communication

IL7 model has important T = 3/2 terms

SR

V
2π

+ A
3π + + V

parameters (∼ 4) fixed by a best fit to the energies of low-lying

states (∼ 17) of nuclei with A ≤ 10

AV18/IL7 Hamiltonian reproduces well:� spectra of A=9–12 nuclei (attraction provided by IL7 in

T = 3/2 triplets crucial for p-shell nuclei)� low-lying p-wave resonances with Jπ=3/2− and 1/2−

respectively, as well as low-energy s-wave (1/2+) scattering
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EM Current Operators I

Marcucci et al. (2005)

j j= (1)

+ j
(2)

(v) + +

+ j
(3)

(V
2π

)

π
π ρ,ω

transverse� Static part v0 of v from π-like (PS) and ρ-like (V ) exchanges� Currents from corresponding PS and V exchanges, for example

jij(v0;PS) = iGV
E(Q2) (τ i × τ j)z

vPS(kj)
[
σi

−
ki − kj

k2
i − k2

j

(σi · ki)
]
(σj · kj) + i ⇌ j

with vPS(k) = vστ (k) − 2 vtτ (k) projected out from v0 terms

)
long range

ππππ ++(v(2)j
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EM Current Operators II� Currents from vp via minimal substitution in i) explicit and

ii) implicit p-dependence, the latter from

τi · τj = −1 + (1 + σi · σj) ei(rji·pi+rij ·pj)� Currents are conserved, contain no free parameters, and are

consistent with short-range behavior of v and V 2π, but are not

unique

q ·
[
j(1) + j(2)(v) + j(3)(V 2π)

]
=

[
T + v + V 2π , ρ

]
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Isoscalar and Isovector Magnetic Form Factors of 3He/3H
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� Isoscalar two-body current contributions small� Leading isovector two-body currents from OPE
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EM Charge Operators

Leading two-body charge operator derived from analysis of the

virtual pion photoproduction amplitudes:

�������� �� �� pseudovector coupling

(a) (b)

diagram (a) = vπ
ij

1

Ei −E

FS
1 + FV

1 τi,z
2

→ included in IA

+
f2

4mm2
π

σi · qσjkj

k2
j +m2

π

τi · τj

FS
1 + FV

1 τi,z
2

+ O(Ei −E)� Essential for predicting the charge f.f.’s of 2H, 3H, 3He, and 4He� Additional (small) contributions from vector exchanges as well

as transition mechanisms like ρπγ and ωπγ

EM observables in A=2–9 nuclei well reproduced: µ’s and M1

widths, elastic and inelastic f.f.’s, inclusive response functions, . . .
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4He Charge Form Factor

Viviani et al. (2007)
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The χEFT approach

Weinberg, PLB251, 288 (1990); NPB363, 3 (1991); PLB295, 114 (1992)� χEFT exploits the χ-symmetry exhibited by QCD to restrict

the form of π interactions with other π’s, and with N ’s, ∆’s, . . .� The pion couples by powers of its momentum Q, and Leff can

be systematically expanded in powers of Q/Λχ (Λχ ≃ 1 GeV)

Leff = L(0) + L(1) + L(2) + ...� χEFT allows for a perturbative treatment in terms of a Q–as

opposed to a coupling constant–expansion� The unknown coefficients in this expansion–the LEC’s–are

fixed by comparison with experimental data� Nuclear χEFT provides a practical calculational scheme,

capable (in principle) of systematic improvement
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Nuclear Interactions and EM Currents in χEFT

Pastore et al. (2009–2011)

NN potential:
υ

CT0
υ

CT2

renormalizeLEC′s

LO (Q0 ) N2LO ( )Q2

p

p′

and consistent EM currents:
LO : eQ−2

NLO : eQ−1

N2LO : eQ0

N3LO : eQ

unknownLEC′s
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Inclusive (e, e′) Scattering and MEC

� Experimental evidence� Theoretical analysis via:

1. Sum rules

2. Explicit calculations of response functions� Large MEC contributions to RT
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(e, e′) Inclusive Response: Scaling Analysis

Donnelly and Sick (1999)

3He 4He

� Scaling variables: ψ′ ≃ y/kF and fL,T = kF RL,T /GL,T� Data at variance with PWIA expectation that fL ≃ fT� Excess strength, especially for 4He, in transverse response
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Approaches to (e, e′) Inclusive Scattering (IS)

Two response functions characterize (e, e′) IS

Rα(q, ω) =
∑

f 6=0

δ(ω +E0 −Ef ) | 〈f | Oα(q) |0〉 |2 α = L, T

require knowledge of continuum states: hard to calculate for A ≥ 3� Sum rules: integral properties of response functions� Integral transform techniques

E(q, τ) =

∫ ∞

0

dωK(τ, ω)R(q, ω)

and suitable choice of kernels (i.e., Laplace or Lorentz) allows

use of closure over | f〉, thus avoiding need of explicitly

calculating nuclear excitation spectrum� While in principle exact, both these approaches have drawbacks
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2H Longitudinal and Transverse Response Functions
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Sum Rules
Schiavilla et al. (1989); Carlson et al. (2002–2003)

Sα(q) = Cα

∫ ∞

ω
+
th

dω
Rα(q, ω)

G 2
Ep(q, ω)

= Cα

[
〈0 | O†

α(q)Oα(q) |0〉− | 〈0 | Oα(q) |0〉 |2
]� Oα(q) = ρ(q) or j⊥(q) for α = L or T (divided by GEp)� Cα are normalization factors so as Sα(q → ∞) = 1 when only

one-body are retained in ρ and j⊥� Sα(q) only depend on ground state and can be calculated

exactly with quantum Monte Carlo (QMC) methods� Direct comparison between theory and experiment problematic:

1. Rα(q, ω) measured by (e, e′) up to ωmax ≤ q

2. Present theory ignores explicit pion production mechanisms,

crucial in the ∆-peak region of RT
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The 4He Coulomb Sum Rule� RC/MEC (small) contributions to SL(q) tend to cancel out� Theory and experiment in agreement when using free GEp
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Excess Transverse Strength
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� How much of the excess transverse strength ∆ST = ST − S1b
T is

in the quasi-elastic peak region?� Can we understand the A-dependence of ∆ST ?
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2H Longitudinal and Transverse Response Functions
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Most of transverse strength is in the tail:

CT

∫ ωmax

ω+
th

dω
RT (q, ω)

G2
Ep(q, ω)

= 0.96 versus S1b+2b
T = 1.13 (S1b

T = 0.90)
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A-Systematics of ∆ST

Carlson et al. (2002)

Excess transverse strength from 2-body currents due to pn pairs

∆ST
A(q) ≃ CT

∫ ∞

0

dx tr
[
F (x; q) ρA(x; pn)

]
στ

F=matrix in two-nucleon στ -space depending on j⊥,ij

ρA=A-dependent two-nucleon density matrix in στ -space� ρA affected by central and tensor correlations� Scaling property

ρA(x; pn, T = 0) ≃ RA ρ
d(x)

and similarly for T = 1 pn pairs with ρd → ρqb

3He 4He 6Li

RA 2.0 4.7 6.3
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A-Scaling Property
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Euclidean Response Functions

Carlson and Schiavilla (1992,1994)

Ẽα(q, τ) =

∫ ∞

ω
+
th

dω e−τ(ω−E0)
Rα(q, ω)

G2
Ep(q, ω)

= 〈0 | O†
α(q)e−τ(H−E0)Oα(q) |0〉 − (elastic term)� e−τ(H−E0) evaluated stochastically with QMC� No approximations made, exact� At τ = 0, Ẽα(q; 0) ∝ Sα(q); as τ increases, Ẽα(q; τ) is more and

more sensitive to strength in quasi-elastic region� Inversion of Ẽα(q; τ) is a numerically ill-posed problem;

Laplace-transform data instead
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3He and 4He Longitudinal Euclidean Response Functions

Eα(q, τ) = exp
[
τ q2/(2m)

]
Ẽα(q, τ)

and EL(q, τ) → Z for a collection of protons initially at rest
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3He and 4He Transverse Euclidean Response Functions

� Excess strength in quasielastic region (τ > 0.01 MeV−1)� Larger in A = 4 than in A = 3, as already inferred from ST
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Summary� Exact QMC calculations of sum rules and Euclidean responses

in light nuclei, based on realistic interactions and currents� Large enhancement due to MEC of transverse sum rules� Euclidean response calculations show that this enhancement

may be as large 20–30% in the quasi-elastic peak region� Implications for the excess of measured cross sections relative

to theory seen in weak CC processes from 12C at MiniBooNE ?
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ν-Deuteron Scattering up to GeV Energy

Shen et al. (2012)
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jµ
NC = −2 sin2θW jµ

γ,S + (1 − 2 sin2θW ) jµ
γ,z + jµ5

z

jµ
CC = jµ

± + jµ5
± j± = jx ± i jy

[
Ta , j

µ
γ,z

]
= i ǫazb j

µ
b

jµ
CC reproduces well known weak transitions in A ≤ 7 nuclei and

µ-capture rates in d and 3He [Schiavilla and Wiringa (2002); Marcucci et al. (2012)]
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Outlook� Inclusive ν scattering characterized by 5 response functions� Sum rules of these (CC and NC) weak responses are being

computed with QMC in A ≤ 12� QMC calculations of Euclidean responses will follow� Determine MEC contributions in quasi-elastic ν-A scattering
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