A realistic approach to inclusive e-scattering from nucle
R. Schiavilla

Department of Physics, Old Dominion University, Norfolk, VA 23529
Theory Center, Jefferson Lab, Newport News, VA 23606

Abstract. We review the current status of calculations, based onst@ahuclear interactions and currents, of the inclusive
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INTRODUCTION

In this talk, we review our current understanding of the tissle electromagnetic response of nuclei in the quasi-
elastic region within a dynamical approach based on r@atisiclear interactions and currents. These interactiods a
currents are discussed in the next section. The calculafigrclusive electromagnetic (or weak) response functions
is a challenging theoretical problem. In light nuclei, twifetent approaches have been pursued so far, one based on
sum rules and the other utilizing integral-transform téghas aimed at removing the need of calculating explicitly
the nuclear excitation spectrum. These approaches amwediin the section after next. The prospects for extending
these methods to a calculation of neutrino inclusive respamduced by charge-changing and neutral weak currents
are briefly outlined in the last section.

REALISTIC NUCLEAR INTERACTIONSAND ELECTROMAGNETIC CURRENTS

The two-nucleon NIN) potential consist of a long-range component induced by-moe exchange (OPE) and
intermediate- to short-range components which are modateshomenologically, as in the Argonngg (AV18)
potential [1], or by scalar and vector meson-exchanges, teei CD-Bonn potential [2], or by a combination of two-
pion-exchange mechanisms and contact two-nucleon tetrols,as in the chiral-effective-field-theory potentials.[3]
All these potential models fit thdN database for energies up to the pion production threshakdyti~ 1. However,

it is by now well established thaN potentials alone fail to predict the spectra of light nu¢#gi cross sections
and analyzing powers iNd scattering at low [5] and intermediate [6] energies, andnihelear matter equilibrium
properties [7].

Models of the three-nucleoMN{N) potential include two- and three-pion exchange [8, 9] a§ asshort-range
repulsive terms. In the lllinois model 7 (IL7), these muydten exchange components involve excitation of intermtedia
Aresonances. The IL7 strength is determined by four parasetsich are fixed by a best fit to the energies of about
17 low-lying states of nuclei in the mass rangec 10, obtained in combination with the AVI8N potential. The
AV18/IL7 Hamiltonian reproduces well the spectra of nughith A=9—-12 [10]—in particular, the attraction provided
by the IL7 NNN potential in isospin 3/2 triplets is crucial for theshell nuclei—and thg-wave resonances with
JT=(3/2)~ and (1/2) in n-*He scattering [11].

Realistic models for the electromagnetic charge and ctioperators include one- and two-body parts. The one-
body charge and current operators follow from a non-rektitvexpansion of the single-nucleon four-current. The
two-body current operators are separated into model-ienidgnt (MI) and model-dependent (MD) terms [12]. The MI
terms are derived from théN potential (the AV18 in the present case), and their longitallcomponents satisfy, by
construction, current conservation with it. They contairinee parameters, and their short-range behavior is densis
with that of the potential. The dominant terms, isovectocliaracter, originate from the static part of the potential,
which is assumed to be due to exchanges of effective psealdogt-like) and vector f-like) mesons. At large inter-
nucleon separations, where tR&l potential is driven by the OPE mechanism, the MI currentaade with the well
known seagull and in-flight OPE currents.



The MD currents are purely transverse, and unconstrainedtognt conservation. The dominant term is associated
with excitation of intermediata isobars [13]. Additional (and numerically small) MD curts@arise from the isoscalar
pry and isovectowrty transition mechanisms. These Ml and MD currents have beamrsto reproduce satisfactorily
a variety of nuclear properties and reactions, includingymesic moments of, antf1 transitions between, low-
lying states of light nuclei [14], the trinucleon magneticrh factors [12], and radiative captures in the few-nucleon
systems [15].

The two-body charge operators represent relativisticemions: they vanish at zero momentum transfer because
of charge conservation; they also vanish in the static lifitite leading term is due to OPE, and is derived from an
analysis of the virtual pion photo-production amplitudeldiional (and numerically small) contributions ariserfro
exchange of vector mesons apdy and wry mechanisms. These two-body charge operators, in pantitwdaOPE
one, are essential for reproducing the observed chargefémtors of the hydrogen and helium isotopes (see Ref. [16]
and references therein).

APPROACHESTO INCLUSIVE SCATTERING

Two response functions characterize inclugiee) scattering, defined as

Ra (0, 0) = zoé(w Eo—Es) | (f| Oq(a) |0) |2,

where| 0) and| f) denote, respectively, the initial and final nuclear stafesnergiesEy andE¢, w andq are the
electron energy and momentum transfers, @a¢q) is either the nuclear charge & L) or current f = T) operator.
Major complications in their calculation arise in consegge=of the need of, and technical difficulties associated,wit
providing an accurate description of the initial bound- dinél scattering-state wave functions, based on realistic
interactions. These complications can be avoided, atileasirt, either by studying integral properties of the resgm
functions—i.e., longitudinal and transverse sum rulesyousing integral transform techniques of the type

E(q,7) = /Om dwK(1,w)R(q, w) ,

which for a suitable choice of kernel—for example, Laplaté][or Lorentz (see Ref. [18] and references therein)
allows the use of closure oveff), thus removing the need of explicitly calculating the naclexcitation spectrum.
While in principle exact, both these approaches have drelkgha

Sum rules

Longitudinal (Coulomb) and transverse sum rules can bessgpd as ground-state expectation values of the charge
and current operators:

© Ra(0, w)
=C dw———"—"-
Sl =Ca | 9°G2 (g 0)

where it is understood that the charge and current oper@gftg) have been divided by the proton electric form
factorGgp, and theC, are normalization constants such that, in the lgnit o and under the approximation that only
one-body terms are retained®y(q), thenSy(q — ) = 1 [19].

The longitudinal and transverse sum rules defined above ¢dsaw energy-weighted ones) have been calculated
exactly with guantum Monte Carlo techniquesAr= 2—6 nuclei [19, 20, 21]. However, direct comparison between
these and the experimentally extracted sum rules cannotdoe mmambiguously for two reasons. First, the experi-
mental determination of the sum rules requires measuriagé#sociated response functions over the whole energy
transfer, from threshold t®. Inclusive electron scattering only allows access to tleesgike region of the four mo-
mentum transfew < g. Therefore, for a meaningful comparison between theoryeaperiment one needs to estimate
the strength outside the region covered by experimentereliir extrapolating the data or by parametrizing the high
energy tail and using energy-weighted sum rules to comsitrai

The second reason that makes the direct comparison betheamretical and “experimental” sum rules difficult lies
in the inherent inadequacy of the present theoretical mimie¢he nuclear electromagnetic current, in particular, it
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lack of explicit pion production mechanisms. The latter thyoaffect the transverse response and make/tpeak
outside the boundary of applicability of the present thebigwever, the charge and current operator discussed in the
previous section provide a realistic and quantitative deson of the longitudinal and transverse response fumdti
the quasi-elastic peak region, where nucleon and virtwal degrees of freedom are dominant.

Experimental Coulomb sum rules in the few-nucleon systerasragood agreement with data (after inclusion of
tail contributions), as shown in Fig. 1 [21]. Contributidnsm two-body terms and one-body relativistic corrections
the charge operator play a minor role in the momentum tramafegye covered by experiment. However, the situation
in reference to the Coulomb sum of medium- and heavy-weighblenis still controversial, that is, the question of
whether the longitudinal response in these systems is tpeelar not is yet to be resolved satisfactorily.

COULOMB SUM RULE
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FIGURE 1. The longitudinal (Coulomb) sum rule in t#e=2—4 nuclei: theory (solid lines) versus experiment (solidles with
error bars); circles without error bars do not include tailrections.

The ratios of transverse to longitudinal sum rules inAhe 3—6 nuclei are shown in Fig. 2. The transverse sum rule
is substantially increased by two-body current contrifmsgi One interesting feature of the resulting enhancersent i
that it increases, for fixed, in going fromA = 3 to 4, and decreases frofr= 4 to 6. It has been shown in Ref. [19]
that the excess transverse strength, definegiBagg) = Sr(q) — Sr(qg; 1b) and where the label “1b” means one-body,
is proportional to
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FIGURE 2. The ratio of transverse to longitudinal sum rules, obtaiwét one-body only and one- plus two-body terms in the
charge and current operators, as function of the momentamsfer in®He, *He, andfLi (left panel) or as function of mass number
for g = 300,400 and 500 MeV/c (right panel).

A} (q) ~Cr /Ow dxtr [F(x;a) p”(x; pn)] ,, -

HereF is a complicated matrix in the two-nucleon spin-isospircepdepending on the current operators, pfids the
pn density matrix in this space as function of the relativeatist, a quantity strongly affected by central and tensor
correlations induced by the repulsive core at short rangeCPE component at long range of th&l potential. Thus



the transverse enhancement is primarily duerigairs, which can be in isospifh = 0 andT = 1. It is known [22]
that these densities scale as
PA(x pn, T = 0) =~ Rap?(x)

and similarly forT = 1 pn pairs with p4 — p®, where the labetl andgb denote, respectively, the deuteron and
15, quasi-bound states. The scaling factorsTor 0 and 1pn pairs have been calculated in light nuclei, and have
been found to be close to each other, with= 2.0,4.7, and 6.3 ir*He, *He, and®Li, respectively. The calculated
excess transverse strength is consistent with that exgpentthe basis of the scaling behavior above [19]. Furtheemor
the analysis above suggests that two-body currents mayealsignificantly the transverse response function in the
guasi-elastic region.

Euclidean response functions

The Euclidean response functions are defined as

~ ® . —1(w-Ep) Ra(dw) t (q)a—T(H-E i
Eq(q,7)= | dwe @B 22 _ g|0f (q)e "H B0, (q) |0) — (elastic ter
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and represent weighted sums Rf (g, w). At T = 0 they correspond to the sum rules discussed in the previous
section, while their derivatives evaluatedrat O correspond to energy-weighted sum rules. Below we presenlts
for the scaled Euclidean responde@, t) = exp[q?t/(2m)] E(q, T)—inclusion of this factor removes the trivial
energy dependence obtained from scattering off an iso(atattrelativistic) nucleon. The longitudinal and transe
Euclidean responses are, respectivfélyzndZu% + (A—Z) y? for a collection ofA non-interacting nucleong, of
which are protonsif, and i, are the proton and neutron magnetic moments).

The main advantage of formulating the Euclidean resportbaist can be calculated exactly using Green’s function
or path-integral Monte Carlo techniques, including botlalfistate interactions and two-body components in the
nuclear charge and current operators [17]. The calculategitudinal and transverse Euclidean response functions
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FIGURE 3. The Euclidean longitudinal and transverse response fumein“He, obtained with one-body only (curve labelled
IA) and one- plus two-body (curve labelled Full) terms in thearge and current operators, are compared to experiment.

of “He are displayed in Fig. 3 [19]. The experimental ones areinbtl by Laplace-transforming the data, since a
direct numerical inversion oE(q, 1) is not possible due to the ill-posed nature of such a problamrder not to
include too much of the tail of th& resonance, the integration has been carried out up to tgyelosscw where the
transverse response starts to increase significantlyowitBince for the transverse Euclidean response at very small
T the tail of theA peak nevertheless plays a role, the experimental resparthésiregion is indicated by a dashed
line only, and should not be compared to theoretical cafimria. However, as increases beyond~ 0.01 MeV1,

the Euclidean response probes strength in the quasiestesik region. Ar > 0.03 MeV—1, contributions tdE (g, T)

from this region is strongly suppressed, and the Euclidegpanse is mostly sensitive to strength at threshold, which
is poorly measured. The large enhancement of the transvesgense betweef®.01 < 1 < 0.03) MeV ! due to
two-body terms in the current operator should be noted.



OUTLOOK

It should be possible to use quantum Monte Carlo methodsitty steutrino response functions, and associated sum
rules, in light nuclei (includindC) within the same realistic dynamical framework illuségin this talk. In recent
years, this has become a hot topic in view of the anomaly @bden recent neutrino quasi-elastic scattering data
on12C [23], i.e., the excess, at relatively low energy, of meaduross section relative to theoretical calculations.
Analyses based on these calculations have led to speaddtiat our present understanding of the nuclear response
to charge-changing weak probes may be incomplete [24] angrticular, that the momentum transfer dependence of
the nucleon axial form factor [25] may be quite differentrfréhat inferred from analyses of pion electro-production
data [26] and measurements of neutrino and anti-neutrimgsections from proton and deuteron [27] However, the
calculations on which these analyses are based use ratiderrmodels of nuclear structure—Fermi gas or local-density
approximations of nuclear matter spectral functions—asagesimplistic treatments of the reaction mechanism, and
should therefore be viewed with skepticism.

As shown in this talk, “exact” calculations of the electranatic response functions in tide= 3—4 nuclei [19]
are in satisfactory agreement with data. In particulars¢healculations have shown that the transverse response is
significantly increased over the quasi-elastic peak regytwo-body currents, in particular those associated with
OPE. It will be interesting to see whether this mechanisnffectve in the weak sector probed by neutrino scattering,
and possibly provide an explanation for the observed anpmahe 12C data. Work along these lines is in progress.
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