
A realistic approach to inclusive e-scattering from nuclei

R. Schiavilla

Department of Physics, Old Dominion University, Norfolk, VA 23529
Theory Center, Jefferson Lab, Newport News, VA 23606

Abstract. We review the current status of calculations, based on realistic nuclear interactions and currents, of the inclusive
electromagnetic response of nuclei in the quasi-elastic region.
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INTRODUCTION

In this talk, we review our current understanding of the inclusive electromagnetic response of nuclei in the quasi-
elastic region within a dynamical approach based on realistic nuclear interactions and currents. These interactions and
currents are discussed in the next section. The calculationof inclusive electromagnetic (or weak) response functions
is a challenging theoretical problem. In light nuclei, two different approaches have been pursued so far, one based on
sum rules and the other utilizing integral-transform techniques aimed at removing the need of calculating explicitly
the nuclear excitation spectrum. These approaches are reviewed in the section after next. The prospects for extending
these methods to a calculation of neutrino inclusive response induced by charge-changing and neutral weak currents
are briefly outlined in the last section.

REALISTIC NUCLEAR INTERACTIONS AND ELECTROMAGNETIC CURRENTS

The two-nucleon (NN) potential consist of a long-range component induced by one-pion exchange (OPE) and
intermediate- to short-range components which are modeledphenomenologically, as in the Argonnev18 (AV18)
potential [1], or by scalar and vector meson-exchanges, as in the CD-Bonn potential [2], or by a combination of two-
pion-exchange mechanisms and contact two-nucleon terms, such as in the chiral-effective-field-theory potentials [3].
All these potential models fit theNN database for energies up to the pion production threshold with χ2 ≃ 1. However,
it is by now well established thatNN potentials alone fail to predict the spectra of light nuclei[4], cross sections
and analyzing powers inNd scattering at low [5] and intermediate [6] energies, and thenuclear matter equilibrium
properties [7].

Models of the three-nucleon (NNN) potential include two- and three-pion exchange [8, 9] as well as short-range
repulsive terms. In the Illinois model 7 (IL7), these multi-pion exchange components involve excitation of intermediate
∆ resonances. The IL7 strength is determined by four parameters which are fixed by a best fit to the energies of about
17 low-lying states of nuclei in the mass rangeA ≤ 10, obtained in combination with the AV18NN potential. The
AV18/IL7 Hamiltonian reproduces well the spectra of nucleiwith A=9–12 [10]—in particular, the attraction provided
by the IL7 NNN potential in isospin 3/2 triplets is crucial for thep-shell nuclei—and thep-wave resonances with
Jπ = (3/2)− and (1/2)− in n-4He scattering [11].

Realistic models for the electromagnetic charge and current operators include one- and two-body parts. The one-
body charge and current operators follow from a non-relativistic expansion of the single-nucleon four-current. The
two-body current operators are separated into model-independent (MI) and model-dependent (MD) terms [12]. The MI
terms are derived from theNN potential (the AV18 in the present case), and their longitudinal components satisfy, by
construction, current conservation with it. They contain no free parameters, and their short-range behavior is consistent
with that of the potential. The dominant terms, isovector incharacter, originate from the static part of the potential,
which is assumed to be due to exchanges of effective pseudoscalar (π-like) and vector (ρ-like) mesons. At large inter-
nucleon separations, where theNN potential is driven by the OPE mechanism, the MI currents coincide with the well
known seagull and in-flight OPE currents.



The MD currents are purely transverse, and unconstrained bycurrent conservation. The dominant term is associated
with excitation of intermediate∆ isobars [13]. Additional (and numerically small) MD currents arise from the isoscalar
ρπγ and isovectorωπγ transition mechanisms. These MI and MD currents have been shown to reproduce satisfactorily
a variety of nuclear properties and reactions, including magnetic moments of, andM1 transitions between, low-
lying states of light nuclei [14], the trinucleon magnetic form factors [12], and radiative captures in the few-nucleon
systems [15].

The two-body charge operators represent relativistic corrections: they vanish at zero momentum transfer because
of charge conservation; they also vanish in the static limit. The leading term is due to OPE, and is derived from an
analysis of the virtual pion photo-production amplitude. Additional (and numerically small) contributions arise from
exchange of vector mesons andρπγ andωπγ mechanisms. These two-body charge operators, in particular the OPE
one, are essential for reproducing the observed charge formfactors of the hydrogen and helium isotopes (see Ref. [16]
and references therein).

APPROACHES TO INCLUSIVE SCATTERING

Two response functions characterize inclusive(e,e′) scattering, defined as

Rα(q,ω) = ∑
f 6=0

δ (ω + E0−E f ) | 〈 f | Oα(q) |0〉 |2 ,

where| 0〉 and | f 〉 denote, respectively, the initial and final nuclear states of energiesE0 andE f , ω andq are the
electron energy and momentum transfers, andOα(q) is either the nuclear charge (α = L) or current (α = T ) operator.
Major complications in their calculation arise in consequence of the need of, and technical difficulties associated with,
providing an accurate description of the initial bound- andfinal scattering-state wave functions, based on realistic
interactions. These complications can be avoided, at leastin part, either by studying integral properties of the response
functions—i.e., longitudinal and transverse sum rules—orby using integral transform techniques of the type

E(q,τ) =

∫ ∞

0
dω K(τ,ω)R(q,ω) ,

which for a suitable choice of kernel—for example, Laplace [17] or Lorentz (see Ref. [18] and references therein)
allows the use of closure over| f 〉, thus removing the need of explicitly calculating the nuclear excitation spectrum.
While in principle exact, both these approaches have drawbacks.

Sum rules

Longitudinal (Coulomb) and transverse sum rules can be expressed as ground-state expectation values of the charge
and current operators:

Sα(q) = Cα

∫ ∞

ω+
th

dω
Rα(q,ω)

G2
E p(q,ω)

= Cα
[
〈0| O†

α(q)Oα (q) |0〉− | 〈0| Oα(q) |0〉 |2
]

,

where it is understood that the charge and current operatorsOα(q) have been divided by the proton electric form
factorGE p, and theCα are normalization constants such that, in the limitq → ∞ and under the approximation that only
one-body terms are retained inOα(q), thenSα(q → ∞) = 1 [19].

The longitudinal and transverse sum rules defined above (as well as energy-weighted ones) have been calculated
exactly with quantum Monte Carlo techniques inA = 2–6 nuclei [19, 20, 21]. However, direct comparison between
these and the experimentally extracted sum rules cannot be made unambiguously for two reasons. First, the experi-
mental determination of the sum rules requires measuring the associated response functions over the whole energy
transfer, from threshold to∞. Inclusive electron scattering only allows access to the space-like region of the four mo-
mentum transferω < q. Therefore, for a meaningful comparison between theory andexperiment one needs to estimate
the strength outside the region covered by experiment, either by extrapolating the data or by parametrizing the high
energy tail and using energy-weighted sum rules to constrain it.

The second reason that makes the direct comparison between theoretical and “experimental” sum rules difficult lies
in the inherent inadequacy of the present theoretical modelfor the nuclear electromagnetic current, in particular, its



lack of explicit pion production mechanisms. The latter mostly affect the transverse response and make the∆ peak
outside the boundary of applicability of the present theory. However, the charge and current operator discussed in the
previous section provide a realistic and quantitative description of the longitudinal and transverse response function in
the quasi-elastic peak region, where nucleon and virtual pion degrees of freedom are dominant.

Experimental Coulomb sum rules in the few-nucleon systems are in good agreement with data (after inclusion of
tail contributions), as shown in Fig. 1 [21]. Contributionsfrom two-body terms and one-body relativistic correctionsin
the charge operator play a minor role in the momentum transfer range covered by experiment. However, the situation
in reference to the Coulomb sum of medium- and heavy-weight nuclei is still controversial, that is, the question of
whether the longitudinal response in these systems is quenched or not is yet to be resolved satisfactorily.

FIGURE 1. The longitudinal (Coulomb) sum rule in theA=2–4 nuclei: theory (solid lines) versus experiment (solidcircles with
error bars); circles without error bars do not include tail corrections.

The ratios of transverse to longitudinal sum rules in theA = 3–6 nuclei are shown in Fig. 2. The transverse sum rule
is substantially increased by two-body current contributions. One interesting feature of the resulting enhancement is
that it increases, for fixedq, in going fromA = 3 to 4, and decreases fromA = 4 to 6. It has been shown in Ref. [19]
that the excess transverse strength, defined as∆ST (q) = ST (q)−ST (q;1b) and where the label “1b” means one-body,
is proportional to
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FIGURE 2. The ratio of transverse to longitudinal sum rules, obtainedwith one-body only and one- plus two-body terms in the
charge and current operators, as function of the momentum transfer in3He,4He, and6Li (left panel) or as function of mass number
for q = 300,400, and 500 MeV/c (right panel).

∆SA
T (q) ≃CT

∫ ∞

0
dx tr

[
F(x;q)ρA(x; pn)

]
στ .

HereF is a complicated matrix in the two-nucleon spin-isospin space depending on the current operators, andρA is the
pn density matrix in this space as function of the relative distance, a quantity strongly affected by central and tensor
correlations induced by the repulsive core at short range and OPE component at long range of theNN potential. Thus



the transverse enhancement is primarily due topn pairs, which can be in isospinT = 0 andT = 1. It is known [22]
that these densities scale as

ρA(x; pn,T = 0) ≃ RA ρd(x)

and similarly forT = 1 pn pairs with ρd → ρqb, where the labeld andqb denote, respectively, the deuteron and
1S0 quasi-bound states. The scaling factors forT = 0 and 1pn pairs have been calculated in light nuclei, and have
been found to be close to each other, withRA = 2.0,4.7, and 6.3 in3He, 4He, and6Li, respectively. The calculated
excess transverse strength is consistent with that expected on the basis of the scaling behavior above [19]. Furthermore,
the analysis above suggests that two-body currents may enhance significantly the transverse response function in the
quasi-elastic region.

Euclidean response functions

The Euclidean response functions are defined as

Ẽα(q,τ) =

∫ ∞

ω+
th

dω e−τ(ω−E0)
Rα(q,ω)

G2
E p(q,ω)

= 〈0| O†
α(q)e−τ(H−E0)Oα(q) |0〉− (elastic term)

and represent weighted sums ofRα(q,ω). At τ = 0 they correspond to the sum rules discussed in the previous
section, while their derivatives evaluated atτ = 0 correspond to energy-weighted sum rules. Below we presentresults
for the scaled Euclidean responsesE(q,τ) = exp

[
q2τ/(2m)

]
Ẽ(q,τ)—inclusion of this factor removes the trivial

energy dependence obtained from scattering off an isolated(non-relativistic) nucleon. The longitudinal and transverse
Euclidean responses are, respectively,Z andZ µ2

p +(A− Z)µ2
n for a collection ofA non-interacting nucleons,Z of

which are protons (µp andµn are the proton and neutron magnetic moments).
The main advantage of formulating the Euclidean response isthat it can be calculated exactly using Green’s function

or path-integral Monte Carlo techniques, including both final state interactions and two-body components in the
nuclear charge and current operators [17]. The calculated longitudinal and transverse Euclidean response functions

FIGURE 3. The Euclidean longitudinal and transverse response functions in4He, obtained with one-body only (curve labelled
IA) and one- plus two-body (curve labelled Full) terms in thecharge and current operators, are compared to experiment.

of 4He are displayed in Fig. 3 [19]. The experimental ones are obtained by Laplace-transforming the data, since a
direct numerical inversion of̃E(q,τ) is not possible due to the ill-posed nature of such a problem.In order not to
include too much of the tail of the∆ resonance, the integration has been carried out up to the energy lossω where the
transverse response starts to increase significantly withω . Since for the transverse Euclidean response at very small
τ the tail of the∆ peak nevertheless plays a role, the experimental response in this region is indicated by a dashed
line only, and should not be compared to theoretical calculations. However, asτ increases beyondτ ≃ 0.01 MeV−1,
the Euclidean response probes strength in the quasi-elastic peak region. Atτ > 0.03 MeV−1 , contributions toE(q,τ)
from this region is strongly suppressed, and the Euclidean response is mostly sensitive to strength at threshold, which
is poorly measured. The large enhancement of the transverseresponse between(0.01≤ τ ≤ 0.03) MeV−1 due to
two-body terms in the current operator should be noted.



OUTLOOK

It should be possible to use quantum Monte Carlo methods to study neutrino response functions, and associated sum
rules, in light nuclei (including12C) within the same realistic dynamical framework illustrated in this talk. In recent
years, this has become a hot topic in view of the anomaly observed in recent neutrino quasi-elastic scattering data
on 12C [23], i.e., the excess, at relatively low energy, of measured cross section relative to theoretical calculations.
Analyses based on these calculations have led to speculations that our present understanding of the nuclear response
to charge-changing weak probes may be incomplete [24] and, in particular, that the momentum transfer dependence of
the nucleon axial form factor [25] may be quite different from that inferred from analyses of pion electro-production
data [26] and measurements of neutrino and anti-neutrino cross sections from proton and deuteron [27] However, the
calculations on which these analyses are based use rather crude models of nuclear structure—Fermi gas or local-density
approximations of nuclear matter spectral functions—as well as simplistic treatments of the reaction mechanism, and
should therefore be viewed with skepticism.

As shown in this talk, “exact” calculations of the electromagnetic response functions in theA = 3–4 nuclei [19]
are in satisfactory agreement with data. In particular, these calculations have shown that the transverse response is
significantly increased over the quasi-elastic peak regionby two-body currents, in particular those associated with
OPE. It will be interesting to see whether this mechanism is effective in the weak sector probed by neutrino scattering,
and possibly provide an explanation for the observed anomaly in the 12C data. Work along these lines is in progress.
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