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Background
The muon capture processes have been used to scrutinizedleamnstructure models, since they provide a testing gréomwave functions and, indirectly, for the interactiohattgenerate them. Several studies were performe
by employing the random phase approximation (RPA) For examgd?2], the total muon capture rates for a large number alewith 6 < 7 < 94 have been evaluated, the authors claimed that an imporeaehimark was
obtained by introducing the pairing correlations. Theyehdwene this ad-hoc by multiplying the one-body transitiorirmalements by the BCS occupation probabilities. Howewa know that the guasiparticle RPA (QRPA)
formalism is a full self-consistent procedure to descriteststently both i) short-range particle-particle (ppyipg correlations, and ii) long-range particle-hole (ptgrrelations handled with RPA. Quite recently, the relatic
QRPA (RQRPA) [2] was applied in the calculation of total mwapture rates on a large set of nuclei fr6f@ to 2**Pu, for which experimental values are available.

In this work we performed a systematic study of the inclusieon capture rates for the nucléC, 2’Ne, 2Mg, 2°Si, *Ar, °2Cr, **Cr, "’Fe, and’®*Ni using the Projected Random Quase-particle Phase Appaiian (PQRPA) as
nuclear model, because it is the only RPA model that treat®#uli Principle correctly. The calculation were perfodusing the QRAP code [4] to evaluate semileptonic procasseg QRPA and PQRPA as nuclear models.

u-capture rates formalism
e Muon Capture Rate: For the muon capture process + (Z, A) — (Z — 1, A) + vy, and for a final statg ;, the muon capture rate reads

AIp) = 22065 Tl y) (1)
whereg, g is the muonic bound state wave function evaluated at thewagdL, = m, — (M, — M) — E% — Er+ E;, whereEg IS the binding energy of the muon in thé' orbit.
e Transition probability : ,
Tuc(|k|, J¢) = ;;ﬁ . > D(JfHOQ),J — O || Ji)|* + 2!<Jf|10—1,J|Ufz>|2} 7 (2)
e Nuclear Matrix Elements: :
For natural parity states, with m = (—)J, e, JT=0",1",27,37,.--: For unnatural parity states, with 7 = (—)/*1, ie., J"=07,17,27,3%, ...
Opy —Op g = g A%ZOHI —Ep ) Opy — Op y = gaM + (ga + s — Go) M),
O_1y=—(g.+ ?w)Mf[U + gv./\/l‘i}b, O_1)=—(9a+9u) é}fJ — QVME[U- (3)

whereG = (3.04545 + 0.00006) x 10~ is the Fermi coupling constant (in natural units) and= —g, = 1: vector and axial-vector effective coupling constantse Bther effective coupling constantsre given in Ref.[3]. The

CVC relates the vector-current pieces of the operépr= (O,:0;) = Joe KT ask - OV = KOy = /2@0‘/, with /2@ = ky — AEgyy + AM, whereAEqy,, = 6cZ ~ 1 4574-1/3 MeV, is the Coulomb energy difference

> L o
between the initial and final nuclehM = M;,, — M,, = 1.29 MeV: neutron-proton mass difference. The consequenceeoC#C relation is the substitutiom; My, — g, M| — %gv,/\/l‘j — gvmﬂ_A%Coul_EB

obtain (3) withi%@ =my, — AEqy — Ep andx = L), for natural parity states. The Nuclear Operators read
: N 1 J—L—=1 : N _1 . A
My = jy(p)Y)(1), va=MTDY TR oYL E) @ V], MY =ML ()Y (E) (o - V),
L>0
whereF ;,, = (=)' 7(1, —mJm|L0), M is the nucleon mass, and= |k|r.

MY, employed to

My = Y0P FLmiLe) VLE) @ o]

Numerical results

For the set of nuclel were adopted the single-particle eeef the self-consistent calculation performed by Market al. [2]. The BCS or PBCS equations were solved in these s.p. sgatjesting the parameter Cm(p) and
vs (n) with the procedure of Ref. [5]. The QRPA and PQRPA calcutatizere performed using a residdaiorce residual interaction with variable particle-peleti (pp) channel coupling = v;” /v5™"". The parameters for the

particle-hole ph) channel coupling aregh = 27 andvfh — 64 (in MeV fm3). These values were fitted tCa from a systematic study of the GT resonances [6]. (fp@rameter corresponding to the particle-partipld channel

coupling, responsible for the known collapse effect of QRIBAetting tat = 0, as the more reasonable value after several tests. Thesresuhe Inclusive Muon Capture Rates (IMCR) are shown it tedble and Fig. 1.
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2c 38 13 12 39 i o S .
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FIG. 0: IMCR, A,;,., without CVC hypothesis (CVC-off); with CVC including (CVC -on+)

and not (CVC-on) the second term in (2.18).

FIG. 1: Left: Energies for Z + 1 nuclei ast-function in QRPA; Central: Theoretical/experimental quotient IMCR for ¢t = 0, g, = —1, x* = 44.6 in PQRPA ; Right: Same

for t =0, g, = —1.135, v2 = 24.3 in PQRPA.

An agrement for the ground state energiesidecay and electron capture data nuclei is obtained when the pararmgmmr-channet is totally

7 + + — — ,
;\A(;)Filli,la\ JE 01.(1)0 02.1113 62.i133 61.61%3 Nine switched off, i.ef = 0. These values are sketched in {gft panell20f Fig.1. Only46r this g.s. energy shows a notable variation for highelues.
Al g8 0.90 0.60 0.95 o7 This _effect IS und_ers_tood becagse the = 1° g.s. In N and*“B are strongly _dependent d)fva_lue by the known QRPA collapse. The abo
: : : : mentioned behavior is washed in the other nuclei with# 11, as we can shown in left panel of Fig. 1.
PQRPA[3] E  0.00 0.50 2.82 3.31 | o Arn ()P g (i = o | | |
Al 6.50 0.16 0.18 0.51 40 A numerical functiony™ = > ; ——;— (Z.;”p Is taking into account the deviation from theoretical toemmental values of IMCR. The theoretice
SMI[7] E| 0.00 0.76 1.49 1.99 results of the IMCR within the PQRpPA have been compared viatdsé obtained in other works using the models of RPA+BCS itl] ROQRPA
A 6.0 0.25 0.22 1.86 (relativistic QRPA) [2]. This leads to a modification of thea coupling constany, = 1 to g, = 1.135, resulting in one better agreement with tf
RPA[8] A[25.4(22.8)] < 10> 10.04 (0.02)10.22 (0.74) experimental data. The influence of the CVC (Conserved Vectorent) in the muon capture rates for the presented nu@siexplicitly verified
Exp.[9] E  0.00 0.95 1.67 262 for the first time in the literature. This showed to be moragigant in lighter nuclel, still more when the Coulomb terfmamuon-nucleus interaction
A16.00 4+ 0.40/0.21 + 0.10/0.18 £ 0.10/0.62 + 0.20/138 + 1 IS disrespected. These results are shown in the table Fighdre IMCR were evaluated with/without CVC hypothesis.
A final comparison was carried through inclusive capture exalusive muon capture ratesifC showing that the PQRPA present a good expe
mental agreement for the inclusive capture, but not for #wdusive one. We do not dispose of other muon capture exeuwslculations in other
FIG. 1: A (10° s71) in excited states of?B. models to exhaustive our study.
Conclusions

We reckon that the comparison between theory and data fanchesive muon capture is not a fully satisfactory test annclear model that is used. The exclusive muon transiiomsore robust for such a purpose. Therefore
it would be necessary more experimental data for the exelsipture rates in other nuclei, beydr@, to test if a nuclear model is satisfactory [4].
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