NC-1π⁰ measurement at the T2K near detector

UNIVERSITY OF OXFORD

Antonin Vacheret for the T2K Collaboration 25th October 2012 Nulnt 2012, Rio de Janeiro, Brasil

- T2K overview
- POD : The π^0 detector
- First result of NC-1π⁰ measurement using the P0D with run I+II data
- Outlook

The T2K experiment

T2K is a 2nd generation long baseline precision experiment :

- θ_{13} via $v_{\mu} \rightarrow v_{e}$ appearance
- atmospheric paramaters Δm^2_{23} , θ_{23} via $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance

Off-axis intense neutrino beam

Near detectors to measure unoscillated beam and background interactions

π^0 background in T2K

Appearance is observed via CC-QE ν_{e} interaction recognised as "e-like" ring at SK

 can distinguish muon and electron rings

Interaction with one π^0 can mimic a ν_{e} signal

- γ ring is e-like and second π⁰ decay
 γ ring can be missed
- large uncertainty in π^0 production mode
- not enough statistics at SK to constrain this background to ~10% level

MC

T2K signal and background events at SK

	The predicted number of events		
Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$	
Total	2.73	9.07	
ν_e signal	0.15	6.60	
ν_e background	1.42	1.32	
ν_{μ} background	1.02	1.02	
$\overline{\nu}_{\mu}$ background	0.06	0.06	
$\overline{\nu}_e$ background	0.08	0.07	

Significant contribution to v_e appearance background due to $NC1\pi^0$

First T2K far detector event

Antonin Vacheret, Particle Physics Dept. Oxford

Nulnt 2012, 25th October Rio de Janeiro, Brasil

Near detector at 280m

The Off-axis near detector (ND280) provides

- Off axis beam measurement based on CCQE
- beam nue contamination
- Super-K background measurements (NCπ⁰)
 Two target regions :
- The P0D (Brass/Plastic segmented) : π⁰ detector
- The tracker region : Fined grained plastic detector FGD and TPC
- Both region have passive water planes

Large Calorimeter coverage (Plastic/Pb segmented)

• PID, hermiticity, active veto

Side Muon ranging detector

• Neutrino rate, Side muons, cosmics trigger

Precise cross-section measurements with very large statistics !!!

Antonin Vacheret, Particle Physics Dept. Oxford

POD : The π^0 detector

- Dense fine-grained tracking calorimeter to measure π⁰ events on H₂0 target
 - 40 tracking modules X-Y scintillator bars with WLS fibres and read out by solid state photosensors (MPPC) : 10,400 channels
 - Removable water targets to extract cross-section
 - Total mass 15.8Ton (12.9Ton water OUT)
- Upstream, Central and surrounding POD ECal modules provide energy containment

Minerva triangular bar section 3.3 cm x 1.7 cm

NC-1 π^0 signal definition and topology

$$\nu_{\mu} + N \rightarrow \nu_{\mu} + N + \pi^0 + X$$

Neutral current interaction

- one π^0 decay
- X : any number of neutrons and protons
- no other particles at vertex

includes

- π^0 via Δ resonances
- Coherent π⁰ production
- π⁰ from nuclear effects

Antonin Vacheret, Particle Physics Dept. Oxford

MC & Data sample

MC sample

- NEUT MC Generator
- Run I (6b/spill) : 55.65 x 10¹⁹ p.o.t.
- Run 2 : 110.15 x 10¹⁹ p.o.t

Data Sample :

- Analysis on Water-IN period only
- Good spill selected if POD and magnet have good detector status
- Run I (6b/spill) : 2.85 x 10¹⁹ p.o.t.
- Run II (11b/spill) : 5.70 x 10¹⁹ p.o.t.

Antonin Vacheret, Particle Physics Dept. Oxford

POD γ shower reconstruction

Reconstruction is a two step process

- Reconstruct track followed by shower reconstruction
 in individual bunch
- NC-1 π^0 analysis uses shower reconstruction output
- look for narrow shower-like pattern
- associate reconstructed shower to vertex
- 3D matching
- distance to vertex to test photon shower hypothesis
- Energy based PID to discriminate muon and EM signal

Antonin Vacheret, Particle Physics Dept. Oxford

Side (Y-Z)

NC-1 π^0 Selection

Selection Cut	Data	MC signal	MC backgrounds
Pre-selection event within beam spill	415750	4569.1 ± 16.1	183382.2 ± 100.7
Fiducial vertex in Water target	51736	1716.1 ± 10.3	48117.1 ± 54.1
No µ-like reject CC events	11170	1185.5 ± 8.0	10571.8 ± 24.6
2 EM-like	2061	399.0 ± 4.7	1958.1 ± 10.8
No µ decay no delayed hit cluster	1536	387.9 ± 4.6	1335.1 ± 2
π^0 direction cut	693	250.4 ± 3.7	616.6 ± 6.8
EM charge additional PID to shower	312	166.7 ± 3.0	223.5 ± 3.5
EM separation	115	79.1 ± 2.1	64.5 ± 1.9

finally calculate π^0 invariant mass $M_{\gamma\gamma} = \sqrt{2E_{\gamma 1}E_{\gamma 2}(1 - \cos\theta_{\gamma\gamma})}$

Antonin Vacheret, Particle Physics Dept. Oxford

Nulnt 2012, 25th October Rio de Janeiro, Brasil

POD NC-1 π^0 reconstruction efficiency

MC reconstructed Invariant Mass

Other

 4.6 ± 0.5

Likelihood fit

 $L_{\text{Total}} = L(\mathbf{E})_{\text{EScale}} \times L(\mathbf{B})_{\text{X-sec}} \times L(\mathbf{S},\mathbf{B})_{\text{Norm}} \times L(\mathbf{E},\mathbf{S},\mathbf{B})_{\text{Shape}},$

 $L_{Total} = L(N_{sig}, N_{bkg}, E_{Scale})$

- Nsig : Number of signal events
- Nbkg : Number of background events
 - Apply NEUT cross section uncertainties to MC background prediction
 - Gaussian with mean of 65 and sigma of 14
- EScale controls the ratio of photoelectrons (PE attributed to a γ) to total energy of γ in MeV
 - Ratio of γ energy to visible energy from MC (0.2PE/MeV)
 - Difference between MC and data due to detector geometry
 - Energy scale systematic is 7%
 - Gaussian with mean 1.0 and sigma 0.07
 - muon energy scale tuned to cosmics and beam data

Antonin Vacheret, Particle Physics Dept. Oxford

Result of the fit on data

	Observed	Expected	Ratio
Signal	66 ± 13	79 ± 2	0.84 ± 0.16
Background	52 ± 10	65 ± 2	0.80 ± 0.16

Fitted E_{Scale} is 0.94 \pm 0.03

 $r = \frac{N_{\pi^0}^{Data}}{N_{\pi^0}^{MC}} = 0.84 \pm 0.16(stat)$

Sideband analysis

Compare background events with a muon decay signal

- Check consistency of background shape prediction with data
- Check agreement between MC background events passing and failing muon decay cut
- Reiterate likelihood fit procedure on background events (gives 0 ± 4 signal events)

Nulnt 2012, 25th October Rio de Janeiro, Brasil

Summary of systematic errors

Source	Error	Contribution to Ratio (%)
Mass Uncertainty	0.8%	0.8%
Detector Alignment	$2.5 \mathrm{~mm}$	< 0.1%
Fiducial Volume	7%	7%
Relative Flux Uncertainty	15%	15(6.5)%
Reconstruction Uncertainties	4.7%	4.7%
Energy Resolution	10%	0.5%
Shape Uncertainty	13.7%	13.7%
Total		22(17)%

Fiducial volume uncertainty comes from vertex reconstruction biais

Neutrino beam flux uncertainty reduced by normalising to tracker region CC-inclusive measurement

$$\frac{N_{CC}^{Data}}{N_{CC}^{MC}} = 1.036 \pm 0.028 \text{(stat)} + 0.044 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.037 \text{(det. syst)} \pm 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 2011 - 0.038 \text{(phys. model)} \qquad P.R.L (107) 041801 - 0.038$$

Reconstruction uncertainties dominated by PID

Shape uncertainty dominated by total number of background events in side band

we present a measurement of NC-1 π^0 production using 8.55 x 10¹⁹ p.o.t (Run I+II) in water IN configuration

data/MC (NEUT) ratio :

 $r = 0.84 \pm 0.16 \text{ (stat)} \pm 0.18 \text{ (sys)}$

• Ratio normalised to tracker CCinclusive measurement is :

$$R = \frac{\frac{N_{\pi^0}^{Data}}{N_{\pi^0}^{MC}}}{\underbrace{N_{\pi^0}^{Data}}_{N_{CC}}} = 0.81 \pm 0.15(stat) \pm 0.14(sys)$$

Outlook

POD has also ran in water OUT configuration during run III (2011-2012)

- optimisation of selection needed due to different shower sampling fraction and efficiency
- Analysis in progress with result planned in 2013

NC-1 π^0 event reconstruction underway in the tracker region (see poster session)

 different topologies accessible : conversion of γ in FGD/ TPC region and Calorimeters

CC-π⁰ selections also in progress

More results in 2013 : stay tuned !

Antonin Vacheret, Particle Physics Dept. Oxford

M. Batkiewicz's poster's H. O'Keeffe poster's

The end

Antonin Vacheret, Particle Physics Dept. Oxford

Nulnt 2012, 25th October Rio de Janeiro, Brasil

Selected events time distribution

Bin centered at bunch time with 300 ns width (selected time cut) RUN I : 33 events

RUN II: 82 events

Antonin Vacheret, Particle Physics Dept. Oxford

π^0 direction cut

Vertex resolution

Antonin Vacheret, Particle Physics Dept. Oxford

Fiducial Volume selection

Distance from edge of fiducial volume (before cut)

Fiducial Volume				
Coordinate	Center	$\frac{Width}{2}$	Minimum	Maximum
X	-36	800	-836	764
Y	-1	870	-871	869
Z	-2116	852.5	-2969	-1264

Antonin Vacheret, Particle Physics Dept. Oxford

Nulnt 2012, 25th October Rio de Janeiro, Brasil

Non Electromagnetic signal

Muon decay cut

Muon Decay cut

EM-like shower total charge

Fractional charge difference between first and last cluster

Antonin Vacheret, Particle Physics Dept. Oxford

Nulnt 2012, 25th October Rio de Janeiro, Brasil

Distance of shower separation

Antonin Vacheret, Particle Physics Dept. Oxford

Vertex distribution

Antonir, vacherer, randoler rigoles pope. Chiera

Energy reconstruction

Antonin Vacheret, Particle Physics Dept. Oxford

Nulnt 2012, 25th October Rio de Janeiro, Brasil