The T2K Experiment

Daniel Scully

NuInt
22.10.2012
On behalf of

504 people, From 59 institutes, In 12 countries
The T2K Experiment

- Long-baseline neutrino oscillation experiment
- J-PARC produces off-axis neutrino beam
- Near Detectors for flux and cross-sections
- Far Detector at Super-Kamiokande
- Precision measurements of θ_{23}, θ_{13}, Δm^2_{32} and neutrino interaction cross-sections
Beam Content

Flux (/cm²/50MeV/10²¹POT)

- ν_μ at ND280
- $\overline{\nu}_\mu$ at ND280
- ν_e at ND280
- $\overline{\nu}_e$ at ND280

E$_{\nu}$ (GeV)

Daniel Scully

University of Warwick
Off-Axis Beam

The diagram shows the ν_μ flux (au) as a function of E_ν (GeV). The curves labeled OA2.0°, OA2.5°, and OA3.0° represent different off-axis angles compared to the main beam direction (0°). The flux peaks at different energies for each curve, indicating the effect of off-axis beams on neutrino flux measurements.
Beam Performance

Total Delivered: 3×10^{20} POT
Near Detectors

- 280m downstream
- On-axis detector: INGRID
 - Flux normalisation
 - Beam direction
- Off-axis detector: ND280
 - Flux composition
 - Flux energy spectrum
 - Interaction cross-sections
INGRID

- 16 Modules
 - 7 Horizontal
 - 7 Vertical
 - 2 off-axis
- Plastic scintillator & steel
- 1 additional module with scintillator only
INGRID

- 16 Modules
 - 7 Horizontal
 - 7 Vertical
 - 2 off-axis
- Plastic scintillator & steel
- 1 additional module with scintillator only
INGRID

- 16 Modules
 - 7 Horizontal
 - 7 Vertical
 - 2 off-axis
- Plastic scintillator & steel
- 1 additional module with scintillator only
INGRID – Profile

Horizontal

Vertical

Run32

χ² / ndf 10.4 / 4
Constant 1.03e+04 ± 61.16
Mean -2.817 ± 2.918
Sigma 439.2 ± 4.815

Run32

χ² / ndf 8.148 / 4
Constant 1.064e+04 ± 61.76
Mean -7.991 ± 3.117
Sigma 461.4 ± 5.393

Daniel Scully

University of Warwick
1 mrad shift gives ~2% energy shift at peak
ND280

- Off-axis detector
- Central target region:
 - π^0 Detector (P0D)
 - Tracker (FGDs + TPCs)
- Surrounding EM Calorimeters
- UA1/NOMAD 0.2T Magnet
- Scintillator planes inside magnet:
 - Side Muon Ranging Detector (SMRD)
\[\pi^0 \] Detector – The P0D

- NC \(\pi^0 \) is a serious \(\nu_e \) appearance background
- Central Target:
 - Water
 - Triangular scintillator bars
 - Brass foils
- Up and Downstream ECals
 - Triangular scintillator bars
 - Lead sheets
- Can be run with water in/out
Tracker

- 2 Fine Grained Detectors
 - Square plastic scintillator bars
 - FGD1 is pure scintillator
 - FGD2 has water targets interspersed
 - Provide interaction target
- 3 Time Projection Chambers
 - Predominantly Argon gas
 - Provide momentum (from curvature)
 - Provide Particle ID (from dE/dx)
Tracker

- 2 Fine Grained Detectors
 - Square plastic scintillator bars
 - FGD1 is pure scintillator
 - FGD2 also has water targets
 - Provide interaction target
- 3 Time Projection Chambers
 - Predominantly Argon gas
 - Provide momentum (from curvature)
 - Provide Particle ID (from dE/dx)
Tracker Particle ID

Daniel Scully

University of Warwick
ECals

- 7 modules surround tracker:
 - Particle ID
 - EM Energy measurement
 - Photon conversion

- 6 modules surround the P0D:
 - Catch high-angle particles escaping P0D
 - Veto incoming backgrounds
 - Constructed at Warwick

- Rectangular plastic scintillator and lead
ECals

- 7 modules surround tracker:
 - Photon conversion
 - EM Energy measurement
 - Particle ID
- 6 modules surround the P0D:
 - Catch high-angle photons
 - Veto incoming backgrounds
 - Constructed at Warwick
- Rectangular plastic scintillator and lead
ECal Particle ID

Electron – Proton
Muon - Electron
Muon – Pion

Daniel Scully
University of Warwick
ND280

Daniel Scully
University of Warwick
Super-Kamiokande
Super-Kamiokande

- 50kT water Cherenkov detector
- 22.5kT fiducial volume
- 295km from beam
- Can distinguish ν_e and ν_μ
- Can measure momentum and angle
- Good timing
T2K at Super-K

Number of events/40nsec

ΔT_0 (nsec)

Number of events

$\cos \theta_{beam}$

RUN1-3 data
(3.010$x10^{26}$ POT)

ν_e candidates:
All FC events
ν_e candidates:
- RUN1+2
- RUN3

$\nu_\mu + \bar{\nu}_\mu$ CC QE
- $\nu_\mu + \bar{\nu}_\mu$ CC non-QE
- $\nu_e + \bar{\nu}_e$ CC
- NC
(MC w/ 2-flavor osc.)

Daniel Scully
University of Warwick
T2K at Super-K

ν_e Candidate
The T2K Experiment

Physics
ν_e Appearance

11 candidate ν_e events selected
3.2 expected if $\theta_{13} = 0$
$\theta_{13} > 0$ at 3.2σ

$\Delta m^2_{23} = 2.4 \times 10^{-3}$ eV2
$\sin^2 2\theta_{23} = 1.0$

$\Delta m^2_{31} = -2.4 \times 10^{-3}$ eV2
$\sin^2 2\theta_{13} = 1.0$

T2K Run 1+2+3
3.01 \times 1020 p.o.t.

3.01 \times 1020 POT

University of Warwick
νμ Disappearance

31 candidate νμ events selected
103 expected with no oscillations

1.4 x 10^{20} POT
From Summer 2011
New Result Soon!

Daniel Scully
University of Warwick
Cross-Sections

ν_μ: Inclusive (Monday)
Quasi-Elastic (Thursday)
Single π (Thursday), Multi π, etc.

ν_e: Inclusive

$\bar{\nu}_\mu$: Inclusive
Quasi-Elastic

NC: Inclusive
Elastic
Single π^0 (Thursday)
Cross-Sections

- Multiple Target Materials:
 - Plastic scintillator: P0D, FGDs, ECals
 - Water: P0D, FGD2
 - Lead: P0D, ECals
 - Steel: INGRID
 - Brass: P0D

- Sometimes exclusive, sometimes in combination
Conclusions

- T2K: neutrino oscillations with an off-axis beam
- Making precision measurements of θ_{13}, θ_{23}, Δm^2_{32}
- Near Detectors:
 - Will make a broad range of interaction measurements
 - Capable of multiple event topologies
 - Containing many target materials
The T2K Experiment

Daniel Scully

NuInt

22.10.2012