nuSTORM: Facility

- **100 kW Target Station**
 - Assume 60 GeV proton
 - Fermilab PIP era
 - Ta target (Heavy metal)
 - Optimization on-going
 - Horn (NuMI) collection
 - Li lens has also been explored

- **Collection/transport channel**
 - Stochastic injection of π

- **Decay ring (3.8 GeV/c)**
 - Large aperture FODO
 - Instrumentation
 - BCTs, mag-Spec in arc, polarimeter

\[\mu^+ \rightarrow e^+ \bar{\nu}_\mu \nu_e \]
\[\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e \]
E_ν spectra ($\mu^+\text{ stored}$)

Event rates/100T at ND hall 50m from straight with $\mu^+\text{ stored}$

<table>
<thead>
<tr>
<th>Channel</th>
<th>N_{evts}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\nu}_\mu$ NC</td>
<td>844,793</td>
</tr>
<tr>
<td>ν_e NC</td>
<td>1,387,698</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$ CC</td>
<td>2,145,632</td>
</tr>
<tr>
<td>ν_e CC</td>
<td>3,960,421</td>
</tr>
</tbody>
</table>

v_e - bar

v_μ - bar
nuSTORM: Conclusions

The Physics case:

- Initial simulation work indicates that a L/E ≈ 1 oscillation experiment using a muon storage ring can confirm/exclude at 10σ (CPT invariant channel) the LSND/MiniBooNE result.

- ν_μ and (ν_e) disappearance experiments delivering at the <1% level look to be doable.
 - Systematics need careful analysis.
 - Detailed simulation work on these channels has not yet started.

- ν physics studies with near detector(s) offer a unique opportunity & can be extended to cover 0.2 < GeV < E_ν < 4 GeV.

- Could be "transformational" w/r to ν interaction physics.