MINERvA is a dedicated neutrino-nucleus cross-section experiment in the NuMI Beamline

NuMI Beamline Ingredients:
- 120 GeV Protons
- 2 interaction length graphite target
- 2 Al Horns
- Fe Decay Pipe

Muon Monitors

Different sources of neutrinos have to be constrained by different measurements:
- *Primary* $p
ightarrow K^+
u$, constrained by hadron production data
- *Secondary* and *tertiary* π in constrained by FTFP model, uncertainty evaluated by comparing different models

Current Flux Constraints

Hadron Production: NA49

NA49, a hadron production experiment at CERN, measured pion production with 158 GeV protons on a thin graphite target. These data (plot at left) cover the relevant kinematics for the NuMI Beam (plot below).

Tertiary Production

Different hadron cascade models predict different neutrino fluxes from tertiary pion production, as shown in the two plots below. Note the 30% variations at the focusing peak.

Beam Focusing

Uncertainties in beamline alignment and horn magnetic field are estimated to be small at minimum bias, but are significant (8%) at fall-off of focusing peak (see plot at right).

Overall Rate Constraint:

Simple final state and well understood cross-sections provide overall flux constraint. The challenge is to isolate the signal from background events. EIP provides discrimination, as shown at right. Estimated statistical precision for MINERvA LE Run: ~10% (Ref: J. Park, NuFact’12)

New Hadron Production Measurements: NA61

In order to improve its flux prediction, MINERvA (and other NuMI-based experiments and LBNE) are collaborating with NA61, a new hadron production experiment at CERN. Plans for taking data with 120 GeV protons on a thick NuMI target are underway.

Table at right shows sizes of various sources of pions that produce neutrinos, integrated over all energies.

<table>
<thead>
<tr>
<th>Source</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Hall Chase [air]</td>
<td>2.2%</td>
</tr>
<tr>
<td>Decay Pipe Walls [Fe]</td>
<td>2.6%</td>
</tr>
<tr>
<td>Target Fins (84.4%)</td>
<td>89.0%</td>
</tr>
<tr>
<td>Budal Monitor (4.6%)</td>
<td></td>
</tr>
</tbody>
</table>

CURRENT FLUX CONSTRAINTS

Hadron Production: NA49

NA49, a hadron production experiment at CERN, measured pion production with 158 GeV protons on a thin graphite target. These data (plot at left) cover the relevant kinematics for the NuMI Beam (plot below). The NA49 data show the importance of tertiary pion production for understanding the NuMI flux.

Tertiary Production

Different hadron cascade models predict different neutrino fluxes from tertiary pion production, as shown in the two plots below. Note the 30% variations at the focusing peak.

Beam Focusing

Uncertainties in beamline alignment and horn magnetic field are estimated to be small at minimum bias, but are significant (8%) at fall-off of focusing peak (see plot at right).

Overall Rate Constraint:

Simple final state and well understood cross-sections provide overall flux constraint. The challenge is to isolate the signal from background events. EIP provides discrimination, as shown at right. Estimated statistical precision for MINERvA LE Run: ~10% (Ref: J. Park, NuFact’12)

New Hadron Production Measurements: NA61

In order to improve its flux prediction, MINERvA (and other NuMI-based experiments and LBNE) are collaborating with NA61, a new hadron production experiment at CERN. Plans for taking data with 120 GeV protons on a thick NuMI target are underway.