Pion Production

S. Dytman for S. Singh & M. Sorel

Charged and neutral pions
Coherent and ‘regular’ pion production
I. ‘tension’ between nucleon and nucleus data for pion production

- For nucleon, only data is old bubble chamber (BNL, ANL)
 - Low statistics
 - Uncertain flux determination
- For nucleus, recent MiniBooNE data (Wilking, Nelson)
 - High statistics
 - Careful flux determination
- For someone with long history in hadron and electron scattering, this seems backward. Normally, quality nucleon data is core of all calculations.
Account for flux, syst errors

\[v_\mu d \rightarrow \mu^- p \pi^+ n \]

\[\sigma \left(10^{-38} \text{ cm}^2\right) \]

\[E \text{ (GeV)} \]

\begin{itemize}
 \item ANL
 \item BNL (no \(\pi N\) cut)
\end{itemize}
Lalakulich, Mosel

Span N data

\[\sigma_{\pi^+} (10^{-38} \text{ cm}^2) \]

\[E_{\nu} (\text{GeV}) \]

\[\nu n \rightarrow \mu^- n \pi^+ \]

\[\pi^+ \]

\[8 \text{ cm}^2 \]

theoretical band:
ANL and BNL inputs
Lalakulich, Mosel

\[\pi^0 \]

\[
\sigma_{\pi^0 p,} (10^{-38} \text{ cm}^2)
\]

\[E_{\nu} \text{ (GeV)} \]

\[\sigma_{1\pi^0} \times 10^{-3} \]

\[E_{\nu}, \text{ GeV} \]

CCpi+ generator distributions 17 October 2012
π+ momentum distributions

FSI gives wrong shape
Solution?

- Is ANL or BNL better? (apparently not)
- Can they be reconciled? (Sobczyk vs. others)
- Can theory tell us what N data should be? (too many uncertainties)
- Can more data be taken?
 - Minerva might have D tgt in future (5 GeV beam)
 - Minerva might be able to pull H data out of CH data.
II. Lots of new data coming – Minerva π^{\pm}

Both ν and $\bar{\nu}$ bar (25, 80% of statistics) very high purity, not efficiency corrected
ISSUE: Avg E_{ν}~3 GeV (~half $W<1.7$ GeV, rest DIS)
can they (do they need to) isolate resonant region?
Minerva π^0 and CC coherent

ν bar plastic (also $\bar{\nu}$ & ν bar plastic coherent)

ISSUE: Avg $\nu E \sim$ 5 GeV to get good eff, purity both inclusive and ‘exclusive’
T2K (ND280)

π^0 result (P0D)

$R = \frac{N_{\pi^0}^{\text{Data}}}{N_{\pi^0}^{\text{MC}}} / \frac{N_{CC}^{\text{Data}}}{N_{CC}^{\text{MC}}}$

$= 0.81 \pm 0.15(\text{stat}) \pm 0.14(\text{sys})$

$\pi^+ + \text{anticipated result (TPC)}$

peak energy ~ 600 MeV

easier for theorists

also lower energy π^+, CC π^0, 'coherent' future
Summary

- New calculation for K, η production (Athar + collabs)
 - small, but measurable in Minerva
- New calculation for γ emission (Alvarez-Ruso + collabs).
 - goal is to understand MiniBooNE deficit at low E_{ν}.
- redo calculation of Hill with nuclear effects