Neutrino-Nucleus Reactions based on Recent Structure Studies

Toshio Suzuki
Nihon University

NuInt12
Oct. 23, 2012
New shell-model Hamiltonians and successful description of Gamow-Teller (GT) and spin-dipole (SD) strengths

SFO (p-shell): GT in 12C, 14C
GXPF1J (fp-shell): GT in Ni isotopes
 Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004)
 Suzuki, Honma et al., PR C79, (2009)
VMU (monopole-based universal interaction)

* important roles of tensor force

- ν^{12}C and ν^{13}C with SFO
- ν^{56}Ni and e-captures on Ni isotopes with GXPF1J
- 40Ar (ν, e$^-$) 40K with VMU
Shell-model interactions

- Phenomenological interaction
 single particle energies + fitted two-body matrix elements
 e.g. p-shell: Cohen-Kurath (1965), sd: USD (1988)
 p-sd: Millener-Kurath (1975)

- Microscopic interaction derived from NN interaction
 1. Renormalization of repulsive core part of NN interaction

 G-matrix:

 \[
 \begin{array}{c}
 \text{sum of ladders} \\
 \end{array}
 \]

 \(V_{\text{low-k}} \): integrating out high momentum components of two-nucleon interaction

 2. Effective interaction of truncated model space

 core-polarization effects

 \(+ 3^{\text{rd}} \text{order} \)
Good energy levels except for a few cases:
e.g. closed-shell structure of 48Ca can not be obtained
(3N forces can solve the problem)
Problems in saturation (binding energies)

• Improvements of G-matrix by monopole corrections

Monopole terms

$$V_M^T (j_1j_2) = \frac{\sum_J (2J + 1) < j_1j_2; JT | V | j_1j_2; JT >}{\sum_J (2J + 1)}$$

Effective single-particle energy:

$$E_{eff} (vj) = \varepsilon(vj) + \sum_j n(vj')V_{M}^{T=1} (j, j') + \sum_j n(\pi j')V_{M}^{np} (j, j')$$

$$\varepsilon(vj) = \text{s.p.e for the core}$$

* New phenom. interactions with monopole corrections

sd-pf: SDPF-M (1999)* → successful descriptions of
pf: KB3 (2001)*, GXPF1 (2004)* energies and transitions
Monopoles: G-matrix vs phenom. interactions

tensor force: $\pi + \rho$ -exchange

more repulsion than G in $T=1$

Three-body force

more attraction than G in $T=0$
Important roles of tensor force

- SFO: p-shell p-sd space up to 2-3 hw excitations

→ Enhancement of spin-isospin channel of monopole terms

Monopole terms p1/2-p3/2 (T=0) is enhanced

\[
V_M^T (j_1, j_2) = \frac{\sum_j (2J + 1) < j_1 j_2; JT | V | j_1 j_2; JT >}{\sum_j (2J + 1)}
\]

Shell evolution in N=8 isotones
GT strengths in ^{12}C: reproduced with $g_A^{\text{eff}}/g_A = 0.95$

Nearly vanishing GT strength in ^{14}C

Nucleosynthesis processes of light elements

$^{12}\text{C}(\nu, \nu'p)^{11}\text{B}$

$^{12}\text{C}(\nu, \nu'n)^{11}\text{C}$

Enhancement of ^{11}B and ^7Li abundances in supernova explosions
^{13}C: attractive target for very low energy ν: $E_\nu < 15$ MeV

$\nu-^{12}\text{C}$: $E_\nu > 15$ MeV

ν-induced reactions on ^{13}C

$^{13}\text{C}(\nu_e, e^-)^{13}\text{N}$

$^{13}\text{C}(\nu_e, \nu_e')^{13}\text{C}$

GT transitions

Fukugita et al., PR C41 (1990)

p-shell: Cohen-Kurath

$g_A^{\text{eff}}/g_A = 0.69$

Detector for solar ν
p-sd shell: SFO

Solar ν cross sections folded over 8B ν spectrum

1_3C (ν, e^-) 13N

$(\nu_e, e^-) \left[\frac{1}{2} (\text{g.s.}) + \frac{3}{2} (3.50\text{MeV}) \right]$

CK: $1.07 \times 10^{-42}\text{cm}^2$

SFO: $1.34 \times 10^{-42}\text{cm}^2$

$(\nu, \nu') \frac{3}{2} (3.69\text{MeV})$

CK: $1.16 \times 10^{-43}\text{cm}^2$

SFO: $2.23 \times 10^{-43}\text{cm}^2$

Suzuki, Balantekin, Kajino, PR C (2012), in press.
New shell-model Hamiltonians in fp-shell:

KB3: Caurier et al, Rev. Mod. Phys. 77, 427 (2005)

- KB3G $A = 47$-52 KB + monopole corrections
- GXPF1 $A = 47$-66

Spin properties of fp-shell nuclei are well described

$B(GT^-)$ for ^{58}Ni $g_A^{\text{eff}}/g_A^{\text{free}} = 0.74$

M1 strength (GXPF1J)

$g_S^{\text{eff}}/g_S = 0.75 \pm 0.2$
56Fe(ν_e,e^-) 56Co

RQRPA vs Shell-model

$\langle \sigma \rangle_{\text{th}} = (258 \pm 57) \times 10^{-42} \text{ cm}^2$

$\langle \sigma \rangle_{\text{exp}} = (256 \pm 108 \pm 43) \times 10^{-42} \text{ cm}^2$

N. Paar, T. Suzuki, M. Honma, T. Marketin, and D. Vretenar

PHYSICAL REVIEW C 84, 047305 (2011)
$f_7/2 \rightarrow f_7/2$

e-capture rates in stellar environments

$56\text{Ni}(e^-, \nu)56\text{Co}$

$\rho Y_e = 10^7 - 10^{10} \text{ g/cm}^3$

$T = T_9 \times 10^9 \text{K}$
$^{58}\text{Ni} \rightarrow ^{58}\text{Co}$

$^{60}\text{Ni} \rightarrow ^{60}\text{Co}$

Exp: Anantaraman et al., PR C78 (2008)
Type-Ia supernova explosion

Accretion of matter to white-dwarf from binary star → supernova explosion when white-dwarf mass is over Chandrasekhar limit
→ ^{56}Ni (N=Z)
→ $^{56}\text{Ni} (e^-, \nu) ^{56}\text{Co} \quad Y_e = 0.5 \rightarrow Y_e < 0.5$ (neutron-rich)
→ production of neutron-rich isotopes; more ^{58}Ni

Decrease of e-capture rate on $^{56}\text{Ni} \rightarrow$ less production of ^{58}Ni.

Problem of large $^{58}\text{Ni}/^{56}\text{Ni}$ ratio in previous calculations can be solved

Famiano
Neutral current reaction on ^{56}Ni

- $B(\text{GT})=6.2$ (GXPF1J)
- $B(\text{GT})=5.4$ (KB3G)

Figure (a):
- ^{56}Ni
- GT_0
- $B(\text{GT})$ comparison between GXPF1J and KB3G

Figure (b):
- ^{56}Ni (ν, ν') ^{56}Ni
- σ vs. $T_\nu (\text{MeV})$ for various reactions:
 - p (gamma, black square)
 - n (yellow diamond)
- Models:
 - GXPF1J+SGII
 - GXPF1J(GT)
 - Kolbe-Langanke
 - Woosley et al.

Figure (c):
- Energy vs. $T_\nu (\text{MeV})$ for various reactions:
- Reactions include:
 - $p^{55}\text{Co}$
 - $n^{55}\text{Ni}$
 - $\alpha^{52}\text{Fe}$
 - $\alpha^{48}\text{Cr}$
 - $\alpha^{51}\text{Fe}$
 - $nn^{54}\text{Ni}$
 - $\nu^{56}\text{Ni}$

Notes:
- HW02
- $1^+ s$
- $1^+ f$
- $3/2^-$
- $7/2^-$
- 0^+
Synthesis of Mn in Population III Star

$^{56}\text{Ni}(\nu, \nu'p)^{55}\text{Co}, \quad ^{55}\text{Co}(e^-, \nu)^{55}\text{Fe}(e^-, \nu)^{55}\text{Mn}$

$^{54}\text{Fe}(p, \gamma)^{55}\text{Co}$

Yoshida, Umeda, Nomoto

Suzuki et al.,
PR C79 (2009)

OBS: Cayrel et al.,

$^{59}\text{Co}, \quad ^{58}\text{Ni}(p, \gamma)^{59}\text{Cu}(e^-, \nu)^{59}\text{Ni}(e^-, \nu)^{59}\text{Co}$
VMU = Monopole based Universal Interaction

Monopole terms in V_{nn}

$$V_{MU} = \text{Monopole based Universal Interaction}$$

$$V_M^T (j_1 j_2) = \sum_J \frac{(2J+1) < j_1 j_2 ; JT | V | j_1 j_2 ; JT >}{\sum_J (2J+1)}$$

- Important roles of tensor force

Otsuka, Suzuki, Honma, Utsuno, Tsunoda, Tsukiyama, Hjorth-Jensen
PRL 104 (2010) 012501
Tensor: bare \approx renormalized

Tensor force \rightarrow proper shell evolutions toward drip-lines
p-sd shell: VMU for p-sd,
Yuan, Suzuki, Otsuka, Xu, Tsunoda, PR C85, 064324 (2012).

p: SFO
sd: SDPF-M (Utsuno)
p-sd: VMU tensor = $\pi+\rho$,
2-body LS = $\sigma+\rho+\omega$ (M3Y)
central = renormalized VMU
40Ar (ν, e$^-$) 40K

SDPF-VMU-LS

sd: SDPF-M (Utsuno et al.)
fp: GXPF1 (Honma et al.)

sd-pf: VMU + LS

$(sd)^{-2} (fp)^2 : 2hw$

B(GT)

ν-40Ar cross sections

Solar ν cross sections folded over 8B ν spectrum

$B(GT) = \Sigma |<f||f_q \sigma_t||i>|^2$ \(f_q = 0.775\) (Ormand et al.)
(p,n) Bhattacharyya et al., PR C80 (2009)
$^{40}\text{Ar} \rightarrow ^{40}\text{K}$

$^{40}\text{Ar} (\nu, e^-)^{40}\text{K}$

GT+IAS

$E_e > 5 \text{ MeV} : \text{ICARUS}$

Solar ν cross sections folded over $^8\text{B} \nu$ spectrum

- **GT:** $E_1^5 + \text{M1} + C_1^5 + L_1^5$
- **IAS:** $C_0 + L_0 \approx [(q^2 - \omega^2)/q^2]^2 \times C$
- $^+ C_0$ only
- $^+ E_1^5$ only

(p,n) Bhattacharya et al., PR C80, 055501 (2009)
$^{40}\text{Ar} \rightarrow ^{40}\text{K}$

<table>
<thead>
<tr>
<th>σ (10^{-42}cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

E_x (MeV)

- SDPF-VMU-LS (GT+IAS)
- RPA (except for 0^+, 1^+)
- TOTAL
- GT

Figure 4: ν_e CC cross section as a function of the neutrino energy. The dashed line corresponds to the Ormand [21] cross section calculation, dotted line assumes that the total cross section of the absorption interaction is 3 times the cross section of the Fermi transition [16] and the solid line is the cross section used in this analysis calculated from RPA including all the transitions [20].

Cheoun, Ha and Kajino, PR C83, 028801 (2011)
Neutral-current reactions

$^{40}\text{Ar} \rightarrow ^{40}\text{Ar}$

Cheoun, Ha and Kajino, PR C83, 028801 (2011)

Martinez-Pinedo, Kolbe, Langanke
$B(M1) = 0.148(59) \mu_N^2$

Li et al, PR C73, 054306 (2006)
Summary

New ν –induced cross sections based on new shell-model Hamiltonians with proper tensor forces

- New ν capture cross sections on 13C by SFO in p-sd shell
 Enhanced solar ν cross sections compared to Cohen-Kurath (p shell)

- New ν-induced cross sections on 16O by SFO-tls
 Energies of spin-dipole states are well reproduced.
 Enhanced cross sections compared with SFO and CRPA
• A new shell model Hamiltonian GXPF1J well describes the spin responses in fp-shell nuclei → New GT strengths in Ni isotopes which reproduce recent experimental data, and more accurate evaluation of e-capture rates at stellar environments.

• New ν-nucleus reaction cross sections in 56Ni → Enhancement of p-emission channel in 56Ni and production rates of Mn and Co in supernova explosions

 Suzuki, Honma et al., PR C79, 061603(R) (2009)

• sd-pf-VMU: GT strength consistent with (p, n) reaction → New cross section for 40Ar (ν,e$^-$) 40K induced by solar ν
Collaborators

M. Honmaa, T. Yoshidab,
S. Chibac, K. Higashiyamad
T. Kajinob,e, B. Balantekinf
T. Otsukag

aUniversity of Aizu
bDepartment of Astronomy, University of Tokyo
cTokyo Institute of Technology
dChiba Institute of Technology
eNational Astronomical Observatory of Japan
fUniv. of Wisconsin
gDepartment of Physics and CNS, University of Tokyo