
HEP-CCE Status

SCD Projects Meeting - R&D
15 September 2022

https://www.anl.gov/hep-cce


9/15/22 SCD Projects Meeting - R&D | HEP-CCE Status

• HEP-CCE is organizing an All Hands Meeting for October 11-13 at Berkeley lab
– https://indico.fnal.gov/event/56044/

• Intention is to
– Carry out a self-assessment of where we are at this point as a project (roughly two and a 

half years after the start of the planned activities) for PPS, IOS and EG
– Plan activities until the end of the current funding cycle (FY23) 
– Discuss status of activities and proposals for beyond FY23

All Hands Meeting

2

https://indico.fnal.gov/event/56044/


9/15/22 SCD Projects Meeting - R&D | HEP-CCE Status

• Class Layout Study
– Looked at size of objects stored in CMS’ archival format (AOD)
– Determined objects with largest compressed size on disk were best to optimize

• Time spent in output was proportionally to compressed size
– Found best to optimize objects for compression

• Optimizing for easy serialization was not guaranteed to help compression
– Biggest single win was removing unnecessary information

• Dropping unnecessary particles from GenParticle list gave 9% reduction in file size
– ROOT’s lossy compression also helpful for compression

• Reducing precision for P4 info can reduce file size by 10% across many data products 

Fine-Grained I/O and Storage (IOS)

3



9/15/22 SCD Projects Meeting - R&D | HEP-CCE Status

• Parallel HDF5 Study
– Developed parallel HDF5 output modules for the MPI-based version of the root serialization 

test framework, two implementations based on different event distribution approach
– Ran initial tests on Cori (Haswell nodes) to understand scaling behavior of only one 

implementation that uses the number of events to be processed to be known in advance. 
The settings e.g. what batch size, HDF5 chunk size, and number of threads to use are 
taken from our prior runs on Cori that resulted in the best performance of the serial HDF5 
output module. For these tests, up to 8 nodes are used so far. 
• Observe almost perfect scaling for 1 MPI process/node

– by keeping the number of events to be processed constant and by increasing the number of MPI 
processes 

– by increasing the number of events to be processed with the number of MPI processes 
• Investigating and analyzing results already obtained with multiple MPI processes per node

– What is Next: 
• Run more tests for MPI startup and communication overhead cost and large scale studies 

followed by a technical paper/report. 

Fine-Grained I/O and Storage (IOS)

4



9/15/22 SCD Projects Meeting - R&D | HEP-CCE Status

• Patatrack
– A frozen, standalone version of CMS heterogeneous pixel track and vertex reconstruction

• “End-to-end”, with mock framework and build system
– Current status

Portable Parallelization Strategies (PPS)

5

Implementations

CPU 
Serial

CUDA
(original)

HIP Kokkos Alpaka
(by CERN 

team)

std::par SYCL
(also by 

CERN team)

OpenMP

NVIDIA

AMD Crashes 
randomly

Intel Does not 
compile (Eigen)

CPU Serial, POSIX 
threads

Serial, TBB

Completed

In progress

Not started

https://github.com/cms-patatrack/pixeltrack-standalone/


9/15/22 SCD Projects Meeting - R&D | HEP-CCE Status

• Patatrack: recent updates
– Work with OpenMP-Target, std::par, and SYCL progresses

• Plans
– Test on AMD and Intel GPUs on JLSE machines at Argonne
– Continue with direct SYCL, OpenMP-Target, and std::par

Portable Parallelization Strategies (PPS)

6

https://github.com/cms-patatrack/pixeltrack-standalone/
https://www.jlse.anl.gov/


9/15/22 SCD Projects Meeting - R&D | HEP-CCE Status

• Propagation-to-r (p2r)
– Kernel for track propagation in radial direction extracted from mkFit
– Current status

Portable Parallelization Strategies (PPS)

7

Implementations

TBB CUDA HIP Kokkos Alpaka std::par SYCL DPL OpenACC

NVIDIA

AMD

Intel

CPU

Completed

In progress

Not started

https://github.com/cerati/p2r-tests
https://github.com/trackreco/mkFit/


9/15/22 SCD Projects Meeting - R&D | HEP-CCE Status

• Propagation-to-r (p2r): recent updates
– First SYCL/std::par/oneDPL implementation (by Alexei) uses a different memory layout 

than CUDA/Kokkos/Alpaka versions
• Storing per-track information in local, per-thread variable (A) instead of using shared 

memory (B)
– Implemented new version of Kokkos+Alpaka using the (A) layout

• (A) layout is much faster on GPU than (B) layout (when omitting data transfers)
• (A) layout is ~30% slower on CPU than (B) layout (does not vectorize as well)

– Can (in principle) make fair comparison of Kokkos/Alpaka/SYCL versions on 
NVIDIA/AMD/Intel GPU
• Need hip-SYCL for AMD GPU for SYCL version

• Plans
– Measure each backends of all the implementations on JLSE hardware 
– Present results at ACAT 22

Portable Parallelization Strategies (PPS)

8

https://github.com/cerati/p2r-tests

