HD Supercell efficiency measurements in Liquid Argon @ Milano-Bicocca: updated results

<u>C. Massari</u>, C. Brizzolari, C. Cattadori, M. Delgado, C. Gotti, D. Guffanti, H. Souza, F. Terranova 26/01/2022

Setup to measure the XA-HD-SC PDE in LAr

The XA-HD-SC w. Cold FE circuit (top)

The XA-SC installed in the test chamber to measure the PDE along its z-axis.

Supercell equipped with:

- PMMA WLS (ELJ&G2P)
- dichroic filters Method as published in JINST 16 (2021) 09027: z-scanning with an 241 Am exposed α source

What we updated:

- Fixed a bug in the code for the efficiency computation.
- Changed sphe integration interval:
 - this update:
 - HPK: from 120 ns before the peak to 800 ns after the peak;
 - FBK: from 170 ns before the peak to 800 ns after the peak;
 - first release: HPK & FBK: from 60 ns before the peak to 800 ns after the peak;
- Changed alpha wfm integration interval
 - this update: HPK & FBK: from 400 ns before the peak to 1000 ns after the peak;
 - first release: HPK & FBK: from 300 ns before the peak to 600 ns after the peak;
- New measurements of SC efficiency w. FBK & Eljen lightguide: New
- Resolution vs $\sqrt{N_{phe}}$: New
- gain of detector vsV_{ov} : New
- Muon wfm deconvolution: New
- muon analysis: New

Method & Data taking

z-scanning of the SC with the 241 Am α (5.480 MeV) source at the following positions:

- pos0: (the lowest possible): ~2 cm above the flange.
 pos1, 2, 3, 4, 5, 6: the center of each dichroic filter. Acquired: 10⁴ x 4 wfms; 20 µs length; ~5 µs pretrigger.
- 3. Source at the topmost position (~49 cm from the flange) and ~ out of LAr:
 - one μ run (10⁴ x 4 events; 20 µs, 5 µs pretrigger)
 - one **s.ph.e. run** (10⁴ x 8 events; 20 μ s length; 1.6 μ s pretrigger)

Source-to-dichroic filter distance: (55 +/- 1) mm.

Fit of alpha spectra: an example

pos.1: *σ*/μ = 4.9 %

SC equipped with FBK & G2P

Resolution vs sqrt(n photoelectrons)

Single Photoelectrons mean waveform

FBK Average sphe waveform

15/03/2022 - PhCollector WG meeting

C. Massari

Single Photoelectrons spectrum

HPK S/N = 4.7

FBK S/N = 4.1

C. Massari

Pulse shape

JINST ave. wfms

- The wfm shows a long undershoot due to 1) the SiPMs AC and 2) cold-to-warm stage couplings. Due to undershoot we implemented different analysis than in JINST work
- No s.ph.e. deconvolution: selection of long s.ph.e. pulses in our data not yet ready → Integrate for 900 nsec (600 ns from peak), to avoid the negative lobe
- Produce synthetic wfms by [LAr scnt. light time profile * s.ph.e. response function from SiPMs studies @ CIEMAT]
- Determine the integrated (within 900 ns) fraction of singlet/triplet light on the synthetic wfm

Fraction of integrated light

Synthetic wfms: SPHE [®] LAr profile (A_c=0.77; T_c=7ns A_t=0.23; T_t=1400 ns)

Gain vs V_{ov}

15/03/2022 - PhCollector WG meeting

Deconvoluted muon waveform

Deconvoluted muon waveform

INF

Numerical evaluation of A_t/A_s

- Fit does not well represent I
- Numerical integration of singlet+triplet component (black dashed line)
- Analytic evaluation of triplet component (blue line) to obtain A_s (singlet component integral)

Residual negative part integral

Deconvoluted muon waveform with FBK

/ ndf

0.002854 / 325

2.182 ± 0.01988 54.14 ± 0.3047 0.3259 ± 0.001043

Efficiency: previous presentation

 $= \frac{4\pi \cdot \alpha \text{ peak}(\text{ADC})}{\text{s.ph.e.}(\text{ADC}) \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \mathbf{q}_{\alpha} \cdot \Omega}$

Efficiency: Updated results HPK & G2P

$$\epsilon = \frac{4\pi \cdot \alpha \text{ peak}(\text{ADC})}{\text{s.ph.e.}(\text{ADC}) \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \mathbf{q}_{\alpha} \cdot \Omega}$$

Efficiency: Updated results FBK & G2P

$$\epsilon = \frac{4\pi \cdot \alpha \text{ peak}(\text{ADC})}{\text{s.ph.e.}(\text{ADC}) \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \mathbf{q}_{\alpha} \cdot \Omega}$$

15/03/2022 - PhCollector WG meeting

Efficiency: Updated results FBK & Eljen

$$\epsilon = \frac{4\pi \cdot \alpha \text{ peak}(\text{ADC})}{\text{s.ph.e.}(\text{ADC}) \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \mathbf{q}_{\alpha} \cdot \Omega}$$

INF

15/03/2022 - PhCollector WG meeting

Efficiency: X-talk and P_{LAr} corrections

		OV	PDE	Uncorrecte d ɛ _{xa}	Measure d Xtalk	P _{LAr} correctio n	Corrected $\boldsymbol{\varepsilon}_{_{XAxtalkonly}}$	Corrected $\boldsymbol{\varepsilon}_{XA x talk and}$ P_LAr
this work	HPK** & G2P	3.0V	50%	2.15 (0.06)	6.62%	0.95	2.02 (0.05)	2.13
	FBK*** & G2P	4.5V	45%	1.83 (0.06)	15.7%	0.91	1.58 (0.05)	1.74
	FBK*** & Eljen	4.5V	45%	1.52 (0.06)	15.7%	0.91	1.31 (0.05)	1.44
JINST work	HPK commercial*	2.7V	45%	3.5 (0.1)	22%		2.9 (0.1)	

* S14160-6050HS (6 × 6) mm², 50 μm

** 75um-HQR

*** Triple Trench

Possible cause for lower efficiencies

Gap between the WLS bar and the SiPMs. At room temperature, for G2P and HPK: ~1/1.5 mm overall.

At cyro temp probably: ~2 mm or more

Shrinking of G2P WLS bar: 8.3‰ (lower limit)

Shrinking of the frame: we tried to estimate the shrinking of the SiPM PCB (same material), with our method it wasn't observable/measurable.

Conclusions

- $S/N_{HPK} = 4.7$; $S/N_{FBK} = 4.1$, better than first release
- Verified linearity of resolution
- Verified linearity of gain vs V_{ov}
- Problems in deconvolution of muon average waveform
- Not sure about LAr purity correction.
- Supercell efficiency with cross talk (and LAr purity) correction:
 - HPK 2.02 (2.13) ± 0.05%
 - FBK & G2P 1.58 (1.74) ± 0.05%
 - FBK & Eljin 1.31 (1.44) ± 0.05%

To Do

- Better estimation of LAr purity and muon analysis
- Deconvolution of alpha average waveforms
- Measurement of Eljen bar shrinking

Backup

Features of the XA HD Supercell under tests

Size/type of the WLS slab Dichoics (sipm/WLS) area	G2P 480 x 93 mm ² , NO Vikuiti on short edges 6 x dichroics (Opto-Campinas) 3.9%
SIPMs	HPK DUNE-75um-HQR, +3V OV (50% PDE) FBK TT, +4.5V OV (45% PDE)
Ganging	x 48 SiPMs by MiB cold Amplifier
# electronic channels	1
SiPMs -Cold Amp. Cold Amp dyn. range	AC 2000 ph.e.
s.ph.e. (50 Ω, 45 V)	~ 2.0 mV on 50 Ω for both HPK and FBK
Chamber volume	~ 10 I
Digitizer	CAEN 14-bit 250 MS/sec, 4 ns/sample
15/03/2022 - PhCollector WG meeting	C. Massari

Hardware

- Cold cables: a bundle of five Kapton RG178 coaxial cables. No DUNE blue cable & Hirose connector due to mechanical (dimension, stiffness) constraints of the setup
- Warm cables: 2.5 m, 50 Ω LEMO cables
- Cold-to-warm flange: 10 contacts vacuum/pressure connector mounted on a CF40 flange No Hirose:
 - the chamber and its payload are pumped down to 10⁻⁴ mbar prior filling →
 - high LAr purity achieved with high reproducibility
 - the purity is maintained w.o. any recirculation along several days from filling

15/03/2022 - PhCollector WG meeting

Measurements with FBK (aggiornare)

FBK measurements of 18/12

15/03/2022 - PhCollector WG meeting

29

INF

Efficiency: positions 1 to 5

 $4\pi \cdot \alpha \text{ peak}(\text{ADC})$ s.ph.e.(ADC) $\cdot f_{int} \cdot LY_{LAr} \cdot En_{\alpha} \cdot q_{\alpha} \cdot \Omega$

15/03/2022 - PhCollector WG meeting

C. Massari

Cosa viene aggiornato in questo update

- //Corretto baco angolo solido disso al minimo valore (pos.1)
- Fixed a bug in the code for the efficiency computation.
- Changed sphe integration interval:
 - this update:
 - HPK: from 120 ns before the peak to 800 ns after the peak;
 - FBK: from 170 ns before the peak to 800 ns after the peak;
 - first release:
 - HPK & FBK: from 60 ns before the peak to 800 ns after the peak;
 - //S/N improved while gain unchanged
- integrazione alpha average wfm (selected at peak)
 - this update: (HPK&FBK: -400 ns to +1000 ns)
 - first release: (HPK&FBK: -300 ns to +600 ns)
- New measurements of SC efficiency w. FBK & ELjin lightguide: New
- alpha & muon wfm deconvolution: New
- muon analysis: New

15/03/29211Pofodetectorevsol/_OV: New Massari

