Status of STT Activities

S. Di Falco

INFN Pisa, Italy

R. Petti

University of South Carolina, Columbia SC, USA

G. Sirri

INFN Bologna, Italy

SAND Meeting 15 March 2022

STT WORKING GROUP

- New STT working group is being formed following the charge received from the SAND TL and CL on 08 March 2022.
- WG activities are related to the design and construction of the STT for SAND, with the final goals assigned being the completion of the detector installation and its readiness for operation.
- ◆ Initial WG chairs: G. Sirri, S. Di Falco, R. Petti
- Dedicated mailing list being created (DUNE-ND-SAND-STT) with initial enrolments from the list of people who expressed interest in the related activities.
 - \implies Encourage any interested people to subcribe once activated
- Will circulate a Doodle survey to select the most convenient time for the WG meetings.

Status of STT prototyping

(based on talk by RP at DUNE collaboration meeting in January 2022)

STRAW PRODUCTION

Production of straws with ultrasonic welding techology:

- JINR line producing 5m long straws ~ 6 straws/hour;
- GTU line producing <2m long straws ~ 80 straws/day.

Demonstrated double AI coating on inner and outer surfaces:

- Protection against humidity for more reliable long term operation;
- Improved gas tightness from reduction of diffusion through straw walls;
- May simplify ground connections through external layer.

Tested/compared different straw types $(4.9 \pm 0.05 \text{ mm})$:

- Wall thickness $12 \ \mu m$ with single AI metallization 70 nm;
- Wall thickness 20 μm with single AI metallization 70 nm;
- Wall thickness 20 μm with double AI metallization 70 nm + 40 nm.

5 m long straws produced at JINR for the gluing tests

USC

MEASUREMENTS OF STRAW PROPERTIES

- ◆ *Measurement of maximal internal pressure* achievable without plastic deformations.
- ♦ Measurement of radial deformations vs. internal gas pressure (GTU):
 - Straws with 4.9mm diameter, 20 μm walls, produced by both JINR and GTU;
 - Comparison of different types of mylar film and AI metallization.
- Measurements of straw elongation and tension vs. internal gas pressure (GTU):
 - Straws with 4.9mm diameter, 12 μm & 20 μm walls;
 - Studied tension drop with increase of internal pressure starting from initial pre-tension.
- ◆ Measurement of straw relaxation vs. time and humidity starting from initial tension.

G. Adamov, N. Tsverava (GTU)

Production	Diameter	Wall	Metallization	Length	P_{\max} tested
JINR	4.92 mm	20 µm	Single 70 nm	20 ст	6 bar
GTU	4.96 mm	20 µm	Double 70+40 nm	20 ст	6 bar

Measurement of radial deformation vs. pressure for straws 1.1 m long Measurement of elongation and tension vs. pressure for straws 1.0 m long

GLUING AND PRESSURE TESTS

- Completed first gluing tests of a XXYY straw layer assembly (JINR):
 - Built test stand $1m \times 1m$ allowing a variation of internal gas preessure in the glued straws;
 - Straws glued together with ELK5 (NA64) epoxy and internal overpressure;
 - Initial spacing left between glued points \sim 20 cm.

⇒ Validation of the concept of XXYY glued assembly

✦ Measurement of deformations of glued XXYY assembly vs. internal gas pressure.

Additional measurements on XXYY glued assembly:

- Gas leak test to verify damages to straw walls;
- Straw resistivity to check metallization damage induced by pressure.

USC

T. Enik (JINR)

Gluing and pressure tests of a XXYY straw layer assembly at JINR

Straws glued together with epoxy ELK5 (~ 20cm spacing)

Cycle multiple times complete glued XXYY assembly from 0 bar to 4 bar (relative): no problems nor apparent damages for the straw assembly

MOCKUP PROTOTYPE(S)

◆ *Mockup prototype(s)* 35cm × 35cm for preliminary validation tests:

- Completed design of mock frame (Hamburg, UofSC);
- Machining of first plexiglass mockup frame being completed in Hamburg;
- Required straws produced by GTU (4.9mm diameter, 20 μm walls);
- End-plugs machined from simplified design;
- Assembly of first mockup prototype at JINR.

Main goals of mockup prototype(s):

- Validate assembly procedure using same geometry/frame as in STT;
- Test the connection/gluing of straws to the frame;
- Test sealing and gas leaks vs. internal pressure;
- Evaluate different design options.
- Additional mockup prototypes expected to be built at various collaborating institutions following the completion of the first one at JINR.

D. Bick (Hamburg)¹²

TESTS OF VMM3 READOUT

- ✦ Tests and calibration of FE boards from Mu2E (BNL) with VMM3 at JINR:
 - Timing calibration using signal generator and timing resolution;
 - Readout of small straw tracker and tests with 55 Fe source & cosmics.

Testbeam exposure of small straw tracker with VMM3 readout in RD51 at CERN:

- Two double layers XX+YY with straws staggered by half diameter (20cm \times 20cm active area);
- Independent tracking system with 3 GEM detectors ($\sigma \sim 50 \mu m$) equipped with VMM3 readout;
- Setup installed in H4 beamline (JINR) and exposed to μ, π with $E \sim 160$ GeV;
- Usable data taken in Oct.-Nov. 2021 (JINR, PNPI, UofSC).

Ongoing analysis of testbeam data:

- DAQ instability found at high rates in Time-over-Threshold mode being investigated;
- Stable data taking when operated with peaking time.

 \implies New testbeam exposure with VMM3 readout at CERN in May 2022

TIMING CALIBRATION

USC

16

Procedure to test and validate VMM3a ASICs used for 42,000 chips in ATLAS NSW

- ✦Automatized VMM3a test stand
- Optical system to read serial numbers of the VMM3a chips being tested
- VMMT: multi-functional test board for testing and characterization of VMM3 ASICs developed by Tomsk State University (Russia) for ATLAS

♦ All VMM3a chips procured by UofSC tested at CERN using ATLAS NSW procedure: average yield about 70% for best selection (green) for a total of 150 chips.

PREPARATION FOR 1.2m \times 0.8m PROTOTYPE

◆ Prototype 1.2m × 0.8m based on design & parts as in full scale STT modules:

- Build at JINR with help from GTU & other institutions;
- Maximal size compatible with existing tooling & similar to NA64 detectors recently built at JINR;
- 4 straw layers XXYY: 672 straws total, no target, no radiator;
- C-composite frame and assembly as in STT modules.

 \implies Aim to build the prototype in 2022 (summer?)

+ FE analysis of deformations induced by gas pressure, wire and straw tension:

- Removable lids giving access to gas manifolds and FE boards, gas tightness (O-rings, etc.);
- Connection of individual straws to C-composite frame and related gas sealing;
- Study interplay between internal overpressure and wire/straw tension.
- Evaluating options for procurement of required components.
- + Contributing institutions:

JINR, GTU, IIT Guwahati, Panjab, Duke, INFN, Hamburg, UofSC.

Backup slides

JINR built 7 detectors 1.2 m x 0.6 m for NA64 sent to CERN in August 6 detectors will be on beam from October 29

Test of 5m long straws for SHiP at the University of Hamburg

Test of 1.8m long straws for STT at Panjab University

Elongation of fixed tube based on pressure change

Tube elongation with weights with no pressure

Measurement of elongation and tension with straws 1.0 m long, 5 mm diameter

Straw numbers	Length	Diameter	Thickness	Elongation at 1 bar (relative)	Weight
1	1 m	5 mm	12 µm	0.66 mm	78.5 g
1	1 m	5 mm	20 µm	0.35 mm	56 g
1	0.5 m	5 mm	12 µm	0.276 mm	35 g
1	0.5 m	5 mm	20 µm	0.17 mm	44 g
400	1 m	5 mm	12 µm		31.4 kg
400	1 m	5 mm	20 µm		22.4 kg

Expected maximal elongation for 4m long straws ~2.6 mm similar maximal frame deformation expected with assembly based on pressurized straws

Otari Kemularia (GTU)

4

Monitoring of gas gain with increased gas flow up to 2,000 times nominal (JINR)

Validation of VMM3a readout with the prototype at JINR: signals from cosmic rays and ⁵⁵Fe source with Ar/CO₂ 80/20 using FPGA-based DAQ readout with existing VMM3 firmware+software