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NuTau at DUNE

® While DUNE is optimized to measure v, appearance in av beam the broadband beam and long baseline lead to
significant v_appearance above the kinematic threshold to produce a t -lepton.

e Due to this, DUNE is the only upcoming neutrino experiment expected to be able to collect a sample of oscillated

e DUNE will be capable to distinguish between electrons, photons, muons, and pions with high efficiency at the
typical energies of beam produced v_- CC beam interactions.
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DUNE Neutrino Flux
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DUNE has studied using (first
proposed in J. Conrad, et al, PRD 82, 093012
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e Simple kinematic cuts on 7 *" yield good
vT-CC/NC discrimination
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Optimized for the CP sensitivity phase
measurement

Low energy

Default starting configuration

Tau-optimized beam: modified to
produce a higher energy spectrum by
modifying the relative position of the
target and horns, and using NuMl style
parabolic horns

Expected counts/year:

~30 v_ in CP-optimized neutrino mode
~130v_ in CP-optimized neutrino mode
~ 800 v_ in Tau-optimized neutrino mode
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Migration matrix for hadronically decaying T leptons produced viav_
charged-current interactions.

Due to the large mass of the 1 * relative to the e + and p #, the threshold
for this process to occur is 3.5 GeV.
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.100.016004

In the few GeV region [1-10] GeV there are contributions from several kinds of

lepton-nucleon interaction processes as defined by W and Q2.

Quasi-elastic (QE): W < 1.07 GeV
Resonance A(1232): 1.1<W < 1.4 GeV
Higher mass resonances: 1.4 < W < 1.8 GeV

Inelastic continuum: W > 1.8 GeV, at low Q° (Shallow Inelastic) and at high Q? (DIS)

At low Q? (< 1GeV) there are large non-perturbative contributions to the inelastic cross section:

target mass corrections, dynamic higher twist effects, higher order QCD terms, and nuclear effects
in nuclear targets.

—
-

To avoid double counting, the evaluation
of the inelastic piece is done over a
restricted phase space.
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Generally, a limit on the hadronic final
state invariant mass W is applied, such as
W>W_ ..
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This W__ is used to separate the exclusive
and inclusive calculations.
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DIS CC—vr Cross-section
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At leading order, in the limit of massless
quarks and target hadrons:

F, and F, are ignored in the muon neutrino
interactions because of a suppression factor
depending on the square of the m, divided by the F,=0 andF, = 2xF,

nucleon mass times neutrino energy, m? /(M Ev)

o  Albright-Jarlskog relations:

Which are a generalization Callan-Gross
relation:

F,(x,Q% = 2xF (x,Q%)

7 (CC) interactions give access to cross section
physics not accessible otherwise!
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A look to the CC v, and v“ Cross Section m.H.reno - PhysrevD.74.033001

The effect of these imposed cuts is much less
pronounced for v_ DIS where m_acts as a physical
cut-off of non-DIS interaction.

See how slowly acc(vr) approaches to crcc(v ) from
below at very HE indicating a persistent T threshold

effect. upper curves: no cuts
lower curves: W2>(1 .4GeV)2 s Q2>1GeV2
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About half of the reduction at high energies is actually
of dynamic origin, to be attributed to a negative
contribution of F5
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.74.033001

Explring The Nature of F,
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Nature of F_ (x, Q%)

® ThisisF, in terms of x
and Q?, its effect is in all
[ x,Q% ] phase space.

o Atlower XBj y Fe values
are high.

e BelowQ’=1,
non-perturbative

e Above Q°=1,
perturbative
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® ThisisF_interms of x and
Q?, its effect is in all [ x,0? ]
phase space.
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Number of Events

Number of Events

Effect of F5 in the total number of events.

In Xsec and Events the F, value covers all the phase
space

Ratio F5 Disable/F5 Enable

Ratio of F5 Disable / F5 Enable

The ratio is greater than 1:

Which is expected since F, is a subtracted
component of the total XSec.

Also, it means that there is a chance to
disentangle an overall normalization
change from a scaling of F5
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Notice the difference between the cross-sections in the F, = F_ = 0 hypothesis and the SM
prediction

GENIE 3.0.6 CC-NuTau Cross Section GENIE 3.0.6 CC- Anti NuTau Cross-Section
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CC - v_TRUTH Level studies show that indeed, when DIS cuts are applied and F, =0 we can extract new
information from the lepton cross section.

GENIE 3.0.6 NuTau GENIE 3.0.6 Anti NuTau
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Comments

The new features which appear in the case of the V_-A interaction as compared to the v_-A and A -nucleon
interactions and contribute to modify the cross sectlons are:

e Kinematical changes in Q? and E, due to the presence of m_

The contributions due to the additional nucleon structure functions Fox (X,0%) and Fex (X,Q?) in the presence of
m_# 0.
T

Modifications in cross-sections due to the effect of polarization state of the t leptons produced in the final state.

The produced t-leptons in the final state may get polarized in the nuclear medium affecting the cross-section
from nuclear targets. The polarization will also affect the topologies and characteristics of its decay products.

The shadowing and anti-shadowing effects in the respective kinematics regions of the Bjorken variable x.

Barbara Yaeggy - University of Cincinnati i



Milky Way and Volcan de Fuego , Guatemala 15
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A key element in the study of tau neutrino physics is the decay modes of the tau lepton

Branching ratio
Tau decay products aren’t 35.2%

Tau decay length ~ 87 ym subject to the Ar nuclear € evr 17.8%
Ar nuclear radius, ~ 3.4 fm . —-
potential e 17.4%

64.8%

== v, T-optimized
— == v, T-optimized
- == v, T-optimized

=
3
NS
ey
g

Tau doesn’t lead to
observables displaced
vertices

Tau lifetime (2.903
+0.005)x10 1% s

Neutrino fluxes at the DUNE far detector. DUNE granularity is

_ , _ ; limited by wire spacing of Domi ' q ‘
Hadronic v Leptonic 7 a few millimeters ominant  decay =~ modes  of = T-
vy Kaonic decays and others go into the

“other” category.

Background Background Observation of Tau tracks
Hadronic Leptonic T is unIiker

Ve, Vy e,

Background for ¢, signal
are CC-v_ events, being v,
flux a small fraction of
the total neutrino flux.

Background for t_ signal
mainly comes from CC—vF
being Y flux very large.


https://arxiv.org/pdf/2007.00015.pdf
https://arxiv.org/pdf/2007.00015.pdf
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XBj vs Structure Functions
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When Q? > 1.8 & Q? <=2.0 GeV
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Figure 2. Schematic behaviour of Rﬁ (z,Q?) as a function of x for a given fixed Q2.
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v-N Scattering

1: Elastic limit

2: SIS region y "

3: DIS region (Q > 1 EreV , W>2 GeV)

4. Soft DIS region (Q'<1 GeVz, W>2 GeV)

Forbidden region
xy) € [0,1]

V-N Scattering
1: Elastic limit
2: SIS region 4
3: DIS region (Q" > 1 2GeVz, V{l,f 2 GeV)
4: Soft DIS region (Q" <1 GeV', W >2 GeV)

Forbidden region
(xy) & [0,1]




Asymptotic freedom makes it possible
to calculate the small distance
interaction for quarks and gluons,

assuming that they are free particles.

Perturbative
2 .
a (Q%) << 1if

-0? >> 1GeV?

Theo
Data o

Deep Inelastic Scattering
e"¢ Annihilation
Hadron Collisions

\Heavy Quarkonia [

A(“Sﬁ)é as(Mz)\
245 MeV ---- 0.1210
211 MeV 0.1183
181 MeV — — 0.1156

J

Nonperturbative
Q%~1GeV
i.e.a_(Q? verylarge
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DIS [pol. stret. fetn.]
DIS [Bj-SR]

DIS [GLS-SR]
1-decays [LEP]

xF; [v -DIS]

F, [e-, w-DIS]

DIS [ep —> jets]
DIS & pp —> jets

QQ + lattice QCD

Y decays

ee Fz

¢"¢ [Ohadl

¢"e[jets & shapes 14 GeV]
¢"e[jets & shapes 22 GeV] ——O——
e" e [jets & shapes 35 GeV]

ete [chad]
ete[jets & shapes 44 GeV]
e" € [jets & shapes 58 GeV]

pE ->bbX
pp, pp > ¥ X
S(pp --> jets)
I'(z%--> had.) [LEP]
€ e [scaling. viol.]
e" e [4-jet rate]
jets & shapes 91.2 GeV
jets & shapes 133 GeV
jets & shapes 161 GeV
jets & shapes 172 GeV
jets & shapes 183 GeV
jets & shapes 189 GeV
jets & shapes 195 GeV
jets & shapes 201 GeV
jets & shapes 206 GeV

Bodek-Yang model aims for
describing DIS cross section in
all Q?regions
arXiv:hep-ex/0308007

——
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a_ 2002 by Siegfried Bethke
(MPI of Physics, Munich, Germany)

DIS experiments extract
information from the lepton
scattering cross sections to
measure Structure Functions of
the target, which are directly
related to the nonperturbative
Parton Distribution Functions,
PDFs.

Albright and Jarlskog, in Nucl.
Phys. B 84, 467 (1975)., pointed
out that there are two additional
structure functions, F, and F.
that contribute to the v_XSec.
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