Detector Requirements and R&D Status for Future Linear High Energy e+e- Machines

Frank Simon & Jenny List

@ Snowmass e+e- Collider Forum April 5, 2022

Outline Physics and Experimental Conditions

Outline Physics and Experimental Conditions

Physics Cross Sections & Signatures

General drivers

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

Collision Energy

- ILC: 250 GeV 500 GeV 1+ TeV, option 91 GeV
- CLIC: 380 GeV 1.5 TeV 3 TeV, option 91 GeV
 - \Rightarrow Leptons, jets, from a few 10 to many 100 GeV, heavy bosons / complex final states

Physics Drivers

- Physics cross sections low: rates, radiation damage moderate in most regions of the detector
 - Statistics is precious: Excellent reconstruction of all final states
 - Requires high luminosity achievable with very small beams: Beamstrahlung (Luminosity spectrum, backgrounds)

Detector Performance Goals - Tracking

Motivated by key physics signatures

Momentum resolution

Higgs recoil measurement, H -> $\mu\mu$, BSM decays with leptons

$\sigma(p_T) / p_T^2 \sim 2 \times 10^{-5} / GeV$

precise and highly efficient tracking, extending to 100+ GeV

low mass, good resolution:

for Si tracker ~ 1-2% X₀ per layer, 7 μ m point resolution

Detector Performance Goals - Tracking

Motivated by key physics signatures

Detector Performance Goals - Tracking

Motivated by key physics signatures

single point resolution in vertex detector ~3 μ m

 $< 0.2 X_0$ per layer

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

Detector Performance Goals - Jets, Photons, PID

Motivated by key physics signatures

 Jet energy resolution Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...

σ(E_{jet}) / E_{jet} ~ 3% - 5% for E_{jet} > 45 GeV

reconstruction of complex multi-jet final states.

• Photons

Resolution not in the focus: ~ 15 - $20\%/\sqrt{E}$ Worth another look ? Coverage to 100s of GeV important

Detector Performance Goals - Jets, Photons, PID

Arbitrary Units

Motivated by key physics signatures

• Jet energy resolution Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...

σ(E_{jet}) / E_{jet} ~ 3% - 5% for E_{jet} > 45 GeV

reconstruction of complex multi-jet final states.

• Photons

Resolution not in the focus: ~ 15 - $20\%/\sqrt{E}$ Worth another look ? Coverage to 100s of GeV important

Particle ID

Clean identification of e, μ up to highest energies

• PID of hadrons to improve tagging, jets,...

Detector Performance Goals - Jets, Photons, PID

Unit

Motivated by key physics signatures

• Jet energy resolution Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...

σ(E_{jet}) / E_{jet} ~ 3% - 5% for E_{jet} > 45 GeV

reconstruction of complex multi-jet final states.

• Photons

Resolution not in the focus: ~ 15 - $20\%/\sqrt{E}$ Worth another look ? Coverage to 100s of GeV important

Particle ID

Clean identification of e, μ up to highest energies

- PID of hadrons to improve tagging, jets,...
- Hermetic coverage Dark matter searches in mono-photon events, ...

N.B.: Achievable limits do not depend strongly on $\sigma(E_{\gamma})$

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

The Linear Collider Detector Design - Main Features

Focusing on general aspects

- A large-volume solenoid 3.5 5 T, enclosing calorimeters and tracking
- Highly granular calorimeter systems, optimised for particle flow reconstruction, best jet energy resolution [Si, Scint + SiPMs, RPCs]
- Low-mass main tracker, for excellent momentum resolution at high energies [Si, TPC + Si]
- Forward calorimeters, for low-angle electron measurements, luminosity [Si, GaAs]
- Vertex detector, lowest possible mass, smallest possible radius [MAPS, thinned hybrid detectors]
- Triggerless readout of main detector systems

Detector Optimisation

some scaling laws

- Cell lateral size
 - Shower separation (EM~2×cell size)
 - Cell time resolution (1 cm/c ~ 30 ps)
 - Time performance for showers
 - ParticleID, easier reconstruction
- Longitudinal segmentation
 - sampling fraction
 - E resolution (ECAL ~15%/ \sqrt{E})
 - shower separation/start
- ECAL inner radius; Barrel Z_{Start}
- ECAL–HCAL distance
- Barrel–Endcap distance
- Dead-zones sizes (from Mechanics, Cooling)

Number of cells $\nearrow \Rightarrow \text{Cost} \nearrow (1/\text{size}^2)$ Cell density $\nearrow \Rightarrow$ Power consumption \checkmark Time resolution $\searrow \Rightarrow$ Power \nearrow

threshold, passive vs active cooling dead-zones ∧

NEED TO BE FULLY RE-EVALUAT for EW region

Inner Radius $\nearrow \Rightarrow$ Tracking performance \checkmark Cost \nearrow^2 (\supset Magnet, Iron) Gaps \nearrow \Rightarrow PFlow performances \checkmark

Vincent Boudry

E	D	

Linear Collider Conditions...

... and the consequences for the detector design

• Linear Colliders operate in bunch trains:

- at CLIC: Δt_b = 0.5 ns; f_{rep} = 50 Hz
- at ILC: $\Delta t_b = 554 \text{ ns}$; $f_{rep} = 5 10 \text{ Hz}$
- at C3: $\Delta t_b = 3...5 \text{ ns}$; $f_{rep} = 120 \text{ Hz}$

 \Rightarrow Enables power pulsing of front-end electronics, resulting in dramatically reduced power consumption

 \Rightarrow Eliminates need for active cooling in many areas of the detectors: Reduced material, increased compactness

Linear Collider Conditions...

... and the consequences for the detector design

• Linear Colliders operate in bunch trains:

- at CLIC: Δt_b = 0.5 ns; f_{rep} = 50 Hz
- at ILC: $\Delta t_b = 554 \text{ ns}$; $f_{rep} = 5 10 \text{ Hz}$
- at C3: $\Delta t_b = 3...5$ ns; $f_{rep} = 120$ Hz
- ... and require extreme focusing to achieve high luminosity

- \Rightarrow Enables power pulsing of front-end electronics, resulting in dramatically reduced power consumption
 - \Rightarrow Eliminates need for active cooling in many areas of the detectors: Reduced material, increased compactness

- Significant beam-induced backgrounds
 - \Rightarrow Constraints on beam pipe geometry, crossing angle and vertex detector radius
 - In-time pile-up of hadronic background: \rightarrow sufficient granularity for topological rejection
 - At CLIC: small Δt_b also results in out-of-time pile-up: \rightarrow **ns-level timing** in many detector systems

Linear Collider Conditions...

... and the consequences for the detector design

• Linear Colliders operate in bunch trains:

- at CLIC: Δt_b = 0.5 ns; f_{rep} = 50 Hz
- at ILC: $\Delta t_b = 554 \text{ ns}$; $f_{rep} = 5 10 \text{ Hz}$
- at C3: $\Delta t_b = 3...5$ ns; $f_{rep} = 120$ Hz
- ... and require extreme focusing to achieve high luminosity

- \Rightarrow Enables power pulsing of front-end electronics, resulting in dramatically reduced power consumption
 - \Rightarrow Eliminates need for active cooling in many areas of the detectors: Reduced material, increased compactness

- Significant beam-induced backgrounds
 - \Rightarrow Constraints on beam pipe geometry, crossing angle and vertex detector radius
 - In-time pile-up of hadronic background: \rightarrow sufficient granularity for topological rejection
 - At CLIC: small Δt_b also results in out-of-time pile-up: **ns-level timing** in many detector systems

Power Pulsing - CLIC example R&D Status

Power-pulsing concept developed for CLIC vertex detector, to match accelerator bunch structure. Analogue peak power needed only during short acquisition time of around 20µs around collisions and can be switched off during 20ms gaps between bunch trains. Most power-consuming digital parts are disabled between bunch trains, while ladder readout is spread over the 20ms. Train Bunch

Experimental setup tested with FPGA-controlled current source and on-detector silicon capacitors at each ASIC. Combined power dissipation stays below 50mW/cm² target

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

Detector Technologies for CLIC: <u>https://arxiv.org/abs/1905.02520</u>

Power Pulsing - CLIC example R&D Status

Power-pulsing concept developed for CLIC vertex detector, to match accelerator bunch structure. Analogue peak power needed only during short acquisition time of around 20µs around collisions and can be switched off during 20ms gaps between bunch trains. Most power-consuming digital parts are disabled between bunch trains, while ladder readout is spread over the 20ms. T = 20msTrain Bunch

Experimental setup tested with FPGA-controlled current source and on-detector silicon capacitors at each ASIC. Combined power dissipation stays below 50mW/cm² target Cables/regulators/capacitors contributions to material budget at $0.1\% X_0$ Operated in magnetic field up to 1.5T without performance loss

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

ILC: few ms for acquisition, switch off after read-out C3: few µs for power on/off. EMI effects? Pulsing in 5T field?

Detector Technologies for CLIC: <u>https://arxiv.org/abs/1905.02520</u>

CLIC Vertex Detector

Air cooling tests

CLIC vertex detector proposed to be air-cooled to reduce material budget Spiral endcap design with forced air flow Feasibility studied using computational fluid dynamics, validated by experimental studies 1:1 scale mock-up of vertex detector performance in wind tunnel measured Thermal simulations reproduce measured data within a few degrees.

fluid dynamics simulation: velocity streamlines of forced air flow

vertex detector spiral endcap geometry

1:1 scale mock-up studied in wind tunnel

Detector Technologies for CLIC: <u>https://arxiv.org/abs/1905.02520</u>

Higher for CLIC - Put in Focus here

Radiation levels:

- inner vertex: 6 x 10¹⁰ n_{eq}/cm²/year; 300 Gy/year
- ECAL endcaps: 2 x 10¹¹ n_{eq}/cm²/year; ~ 10 Gy/year
- BeamCal: 1.4 x 10¹⁴ n_{eq}/cm²/year; ~ 7 MGy/year

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• In general the radiation environment and the particle density at Linear Colliders is benign compared to HL-LHC - but not fully free from challenges. The most stringent requirements are imposed by CLIC 3 TeV

Energy stage	380	Gev Hit rates	S3T	eV .
Subdetector	Minimum Hits[1/mm ² /train]	Maximum Hits[1/mm ² /train]	Minimum Hits[1/mm ² /train]	Maximu Hits[1/mm ² /
Vertex barrel	0.2	3.2	0.6	8.8
Vertex endcaps	0.1	2.7	0.2	8.8
Tracker barrel	0.0003	0.03	0.002	0.1
Tracker endcaps	0.0004	0.1	0.002	0.6

		Back	ground	
Energy stage	380 C	^{BeV} energ	ју 3 Те	٧
Subdetector	Incoherent pairs [GeV/train]	$\gamma\gamma \rightarrow hadrons$ [GeV/train]	Incoherent pairs [GeV/train]	$\gamma\gamma ightarrow ha$ [GeV/t
ECAL barrel ECAL endcaps + plugs	3.6 11.1	2.1 9.4	14 39	52 252
HCAL barrel HCAL endcaps	0.05 2874	0.18 7.0	0.22 11790	5.0 312
Total ECAL+HCAL	2889	19	11840	621
LumiCal BeamCal	68.5 54730	4.5 5.6	283 270 600	193 540

Higher for CLIC - Put in Focus here

Radiation levels:

- inner vertex: 6 x 10¹⁰ n_{eq}/cm²/year; 300 Gy/year
- ECAL endcaps: 2 x 10¹¹ n_{eq}/cm²/year; ~ 10 Gy/year
- BeamCal: 1.4 x 10¹⁴ n_{eq}/cm²/year; ~ 7 MGy/year

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• In general the radiation environment and the particle density at Linear Colliders is benign compared to HL-LHC - but not fully free from challenges. The most stringent requirements are imposed by CLIC 3 TeV

Energy stage	380	Gev Hit rate	S31	TeV
Subdetector	Minimum Hits[1/mm ² /train]	Maximum Hits[1/mm ² /train]	Minimum Hits[1/mm ² /train]	Maximu Hits[1/mm ² /
Vertex barrel	0.2	3.2	0.6	8.8
Vertex endcaps	0.1	2.7	0.2	8.8
Tracker barrel	0.0003	0.03	0.002	0.1
Tracker endcaps	0.0004	0.1	0.002	0.6

	Background			
Energy stage	380 C	^{ev} energ	ду 3 Те	V
Subdetector	Incoherent pairs [GeV/train]	$\gamma\gamma \rightarrow hadrons$ [GeV/train]	Incoherent pairs [GeV/train]	$\gamma\gamma ightarrow h$ [GeV/
ECAL barrel ECAL endcaps + plugs	3.6 11.1	2.1 9.4	14 39	52 252
HCAL barrel HCAL endcaps	0.05 2874	0.18 7.0	0.22 11790	5. 312
Total ECAL+HCAL	2889	19	11840	621
LumiCal BeamCal	68.5 54730	4.5 5.6	283 270 600	193 540

Higher for CLIC - Put in Focus here

- inner vertex: 6 x 10¹⁰ n_{eq}/cm²/year; 300 Gy/year
- ECAL endcaps: 2 x 10¹¹ n_{eq}/cm²/year; ~ 10 Gy/year
- BeamCal: 1.4 x 10¹⁴ n_{eq}/cm²/year; ~ 7 MGy/year

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• In general the radiation environment and the particle density at Linear Colliders is benign compared to HL-LHC - but not fully free from challenges. The most stringent requirements are imposed by CLIC 3 TeV

Energy stage	380	GeV	Hit rates	S3T	3 TeV	
Subdetector	Minimum Hits[1/mm ² /train]	N Hits[/Iaximum [1/mm ² /train]	Minimum Hits[1/mm ² /train]	Maximur Hits[1/mm ² /	
Vertex barrel	0.2		3.2	0.6	8.8	
Vertex endcaps	0.1		2.7	0.2	8.8	
Tracker barrel	0.0003		0.03	0.002	0.1	
Tracker endcaps	0.0004		0.1	0.002	0.6	

	Background					
Energy stage	380 C	^{BeV} energ	ду 3 Те	V		
Subdetector	Incoherent pairs [GeV/train]	$\gamma\gamma \rightarrow hadrons$ [GeV/train]	Incoherent pairs [GeV/train]	$\gamma\gamma ightarrow h$ [GeV.		
ECAL barrel	3.6 11.1	2.1 9.4	14 39	52 252		
HCAL barrel HCAL endcaps	0.05 2874	0.18 7.0	0.22 11790	5. 312		
Total ECAL+HCAL	2889	19	11840	621		
LumiCal BeamCal	68.5 54730	4.5 5.6	283 270 600	193 540		

Higher for CLIC - Put in Focus here

- ECAL endcaps: 2 x 10¹¹ n_{eq}/cm²/year; ~ 10 Gy/year
- BeamCal: 1.4 x 10¹⁴ n_{eq}/cm²/year; ~ 7 MGy/year

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• In general the radiation environment and the particle density at Linear Colliders is benign compared to HL-LHC - but not fully free from challenges. The most stringent requirements are imposed by CLIC 3 TeV

Energy stage	380	GeV	Hit rates	S3T	3 TeV	
Subdetector	Minimum Hits[1/mm ² /train]	Minimum M Hits[1/mm ² /train] Hits[Minimum Hits[1/mm ² /train]	Maximur Hits[1/mm ² /	
Vertex barrel	0.2		3.2	0.6	8.8	
Vertex endcaps	0.1		2.7	0.2	8.8	
Tracker barrel	0.0003		0.03	0.002	0.1	
Tracker endcaps	0.0004		0.1	0.002	0.6	

	Background					
Energy stage	380 C	^{BeV} energ	ју 3 Те	٧		
Subdetector	Incoherent pairs [GeV/train]	$\gamma\gamma \rightarrow hadrons$ [GeV/train]	Incoherent pairs [GeV/train]	$\gamma\gamma ightarrow h$ [GeV/		
ECAL barrel ECAL endcaps + plugs	3.6 11.1	2.1 9.4	14 39	52 252		
HCAL barrel HCAL endcaps	0.05 2874	0.18 7.0	0.22 11790	5. 312		
Total ECAL+HCAL	2889	19	11840	621		
LumiCal BeamCal	68.5 54730	4.5 5.6	283 270 600	193 540		

Higher for CLIC - Put in Focus here

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• In general the radiation environment and the particle density at Linear Colliders is benign compared to HL-LHC - but not fully free from challenges. The most stringent requirements are imposed by CLIC 3 TeV

Energy stage	380	GeV	Hit rates	S3T	3 TeV	
Subdetector	Minimum Hits[1/mm ² /train]	Minimum M Hits[1/mm ² /train] Hits[Minimum Hits[1/mm ² /train]	Maximur Hits[1/mm ² /	
Vertex barrel	0.2		3.2	0.6	8.8	
Vertex endcaps	0.1		2.7	0.2	8.8	
Tracker barrel	0.0003		0.03	0.002	0.1	
Tracker endcaps	0.0004		0.1	0.002	0.6	

	Background					
Energy stage	380 C	^{BeV} ener	19 3 To	eV		
Subdetector	Incoherent pairs [GeV/train]	$\gamma\gamma \rightarrow hadrons$ [GeV/train]	s Incoherent pairs [GeV/train]	$\gamma\gamma ightarrow h$ [GeV/		
ECAL barrel	3.6 11.1	2.1 9.4	14 39	52 252		
HCAL barrel	0.05	0.18	0.22	5.		
HCAL endcaps	2874	7.0	11790	312		
Total ECAL+HCAL	2889	19	11840	621		
LumiCal	68.5	4.5	283	193		
BeamCal	54 / 30	5.6	270600	540		

Technologies for Linear Colliders

Successful development addressing many key challenges

Key technologies for linear collider detector baselines have been developed and demonstrated in prototypes and test beams many, but not all central requirements met [but there is always potential for improvement!]

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

+ activities in different R&D initiatives and consortia, such as EU funded projects EUDET, AIDA, AIDA-2020 and most recently AIDA-Innova

Beyond the Baseline

Possible Ideas going beyond current technology & ideas

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

particle ID systems - improved flavour tagging with better π/K separation via TOF or other means

added readout dimensions in calorimetry: highly granular dual readout, new optical materials

> exploiting ps timing capabilities in calorimeters and trackers

highly pixelated sensors throughout all silicon systems of the detectors

New radiation hard sensor materials for forward instrumentation

Ultra-low mass mechanics, ultra-low mass & ultra-low power interfaces and services

General areas of particular importance for Linear Colliders

in the context of Linear Colliders in the last

General areas of particular importance for Linear Colliders

Improved performance:

- Higher granularity & spatial resolution
- Better time resolution
- Faster readout
- Lower noise

in the context of Linear Colliders in the last

General areas of particular importance for Linear Colliders

Improved performance:

- Higher granularity & spatial resolution
- Better time resolution
- Faster readout
- Lower noise

Significant development of detector technologies in the context of Linear Colliders in the last decades - some, but not all key requirements met

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

Better integration / system aspects:

- Power pulsing in all systems
- Lower mass, lower power lacksquare
- Compactness, smaller tolerances
- Higher precision, better alignment
- Improved scalability

General areas of particular importance for Linear Colliders

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

Better integration / system aspects:

- Power pulsing in all systems
- Lower mass, lower power
- Compactness, smaller tolerances
- Higher precision, better alignment
- Improved scalability

Summary

- paradigm, with highly granular calorimeters and light-weight, high-precision tracking
- The detector concepts for Linear Colliders (ILC and CLIC), CLICdet, ILD, SiD are based on the particle flow • Ambitious precision goals and beam-induced backgrounds drive granularity and timing requirements • Powerpulsing, allowed by the linear collider bunch train structure, is central to achieving low material by
- eliminating the need for cooling
- adaption to C3 environment should be doable, but needs work
- In an extensive R&D program, technologies for linear collider detectors have been developed and demonstrated in test beams, meeting some but not all performance goals • R&D is still needed to meet all requirements, and also has the potential to further improve
- the performance beyond the current baseline
- also relatively mature detector concepts remain open to new ideas & technologies!
- need another benchmarking excercise to reduce options?

Summary

- paradigm, with highly granular calorimeters and light-weight, high-precision tracking
- Ambitious precision goals and beam-induced backgrounds drive granularity and timing requirements
- eliminating the need for cooling
- adaption to C3 environment should be doable, but needs work
- In an extensive R&D program, technologies for linear collider detectors have been developed and demonstrated in test beams, meeting some but not all performance goals
- R&D is still needed to meet all requirements, and also has the potential to further improve the performance beyond the current baseline
- also relatively mature detector concepts remain open to new ideas & technologies!
- need another benchmarking excercise to reduce options?

• The detector concepts for Linear Colliders (ILC and CLIC), CLICdet, ILD, SiD are based on the particle flow • Powerpulsing, allowed by the linear collider bunch train structure, is central to achieving low material by

Many thanks to F.Simon, A. Robson, R. Pöschl, V. Boudry A. White, W. Lohmann and many others who contributed

Documents & Contacts- CLIC

Project Overview & Detector Needs

- The CLIC project, <u>https://arxiv.org/abs/2203.09186</u>
- Compact High-level Summary for ESPPU: The Compact Linear e+e- Collider (CLIC): Accelerator and Detector (arXiv:1812.07987) https://arxiv.org/abs/1812.07987
- Detector technologies for CLIC (CERN-2019-001, arXiv:1905.02520) http://dx.doi.org/10.23731/CYRM-2019-001
- CLIC 2018 Summary Report (CERN-2018-005-M, arXiv:1812.06018) http://dx.doi.org/10.23731/CYRM-2018-002
- A detector for CLIC: main parameters and performance (arXiv:1812.07337) https://cds.cern.ch/record/2649437
- CLICdet: The post-CDR CLIC detector model; <u>https://cds.cern.ch/record/2254048</u>

Main contacts:

Aidan Robson (aidan.robson@glasgow.ac.uk) Lucie Linssen (<u>lucie.Linssen@cern.ch</u>)

Documents & Contacts- ILC

Project Overview & Detector Needs

- The International Linear Collider: Report to Snowmass 2021 <u>https://arxiv.org/abs/2203.07622</u>
- The International Linear Collider: A Global Project <u>https://arxiv.org/abs/1903.01629</u>
 - Compact Summary for ESPPU: <u>https://arxiv.org/abs/1901.09829</u>
- The International Linear Collider Machine Staging Report 2017 <u>https://arxiv.org/abs/1711.00568</u>
- The International Linear Collider Technical Design Report Volume 1: Executive Summary https://arxiv.org/abs/1306.6327
- The International Linear Collider Technical Design Report Volume 4: Detectors https://arxiv.org/abs/1306.6329
- International Large Detector: Interim Design Report <u>https://arxiv.org/abs/2003.01116</u> Linear Collider Collaboration Detector R&D Report <u>https://doi.org/10.5281/zenodo.3749461</u>

Main contacts:

ILD: Ties Behnke (ties.behnke@desy.de)

SiD: Andy White (awhite@uta.edu), Marcel Stanitzki (marcel.stanitzki@desy.de)

The Linear Collider Detector Design

Variations of the main design

• Two detector concepts for ILC: SiD, ILD - with somewhat different optimisation

5T field all-Si tracker with outer radius of 1.2 m VTX inner radius 14 mm $4.5 \lambda_{I} HCAL$

- 3.5T / 4T field
- TPC as main tracker, supplemented by outer Si envelope radius 1.77 m / 1.43 m
- VTX inner radius 16 mm
- 6 λ_I HCAL

Detector Parameters

	ILD (IDR_L/IDR_S)	SiD	CLICdet	CLD	IDEA	CEPC base
Vertex technology	Silicon	Silicon	Silicon	Silicon	Silicon	Silicon
Vertex inner radius	1.6 cm	1.4 cm	3.1 cm	1.75 cm	1.7 cm	1.6 cm
Tracker technololy	TPC + Silicon	Silicon	Silicon	Silicon	Drift chamber + Si	TPC + Sili
Tracker outer radius	1.77 m / 1.43 m	1.22 m	1.5 m	2.1 m	2.0 m	1.8 m
Calorimeter	PFA	PFA	PFA	PFA	Dual readout	PFA
(ECAL) inner radius	1.8 m / 1.46 m	1.27 m	1.5 m	2.15 m	2.5 m	1.8 m
ECAL technology	Silicon	Silicon	Silicon	Silicon	-	Silicon
ECAL absorber	W	W	W	W	-	W
ECAL thickness	24 X ₀ (30 layers)	26 X_0 (30 layers)	22 X ₀ (40 layers)	22 X ₀ (40 layers)	-	24 X _₀ (30 la
HCAL technology	Scintillator	Scintillator	Scintillator	Scintillator	-	RPC
HCAL absorber	Fe	Fe	Fe	Fe	-	Fe
HCAL thickness	5.9 λ _ι (48 layers)	4.5 λ _ι	7.5 λ _ι (60 layers)	5.5 λ _ι (44 layers)	8 λ _ι (2 m)	4.9 λ _ι (40 la
(HCAL) outer radius	3.34 m / 3.0 m	2.5 m	3.25 m	3.57 m	≤4.5 m	3.3 m
Solenoid field	3.5 T / 4 T	5 T	4 T	2 T	2 T	3 T
Solenoid length	7.9 m	6.1 m	8.3 m	7.4 m	6.0 m	8.0 m
Sol. inner radius	3.42 m / 3.08 m	2.6 m	3.5 m	3.7 m	2.1 m	3.4 m

Constraints Imposed by Machine Conditions

Backgrounds

• Backgrounds - a key driver at CLIC: $\gamma\gamma \rightarrow$ hadrons results in significant backgrounds in the full acceptance of the detector

- 3 TeV tt event at CLIC, with background overlaid, and removed by reconstruction
- \Rightarrow Requires timing on the ns level, high segmentation and powerful reconstruction techniques

Constraints Imposed by Machine Conditions

- Backgrounds
- Backgrounds a key driver at CLIC: $\gamma\gamma \rightarrow$ hadrons results in significant backgrounds in the full acceptance of the detector

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

3 TeV tt event at CLIC, with background overlaid, and removed by reconstruction

- \Rightarrow Requires timing on the ns level, high segmentation and powerful reconstruction techniques
- Significant background from e+e- pairs imposes constraints on beam pipe radius, vertex detector location:
- \Rightarrow High magnetic field to enable small radius

A few examples: Tracking and flavor tagging

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• Momentum resolution well within specs for all concepts - with slight differences depending on size, magnetic field and material • Material wins at low p, field and single point resolution at high p

see Emilia Leogrande earlier today

A few examples: Tracking and flavor tagging

A few examples: Jets & PFA

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

Jet energy resolution without background

Performance drivers: Calo granularity, tracker radius, field

A few examples: Jets & PFA

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

Jet energy resolution without background ... and with 3 TeV CLIC background

Performance drivers: Calo granularity, tracker radius, field

A few examples: Jets & PFA

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

A few examples: Jets & PFA

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

PFA resolution drivers, and a word on photons

• Dependence of PFA JER on ECAL granularity

PFA resolution drivers, and a word on photons

• Dependence of PFA JER on ECAL granularity

PFA resolution drivers, and a word on photons

PFA resolution drivers, and a word on photons

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

Particle ID

Studies exploiting dE/dx and TOF with ECAL timing

TF9 Training Not at all Collider - specific

operation, including *formation of key experts* and *preservation of knowledge* and expertise

• Today's students are the (senior) faculty during the main physics exploitation phase: Engagement of young generation crucial for planning of priorities, broad community support

• Experiments on very long time scales - targeted R&D already since 2 decades, first collisions at least 15 years away, operation over decades: Need robust schemes for *long-term detector maintenance* and

From LCs to FCC-ee

Key differences with detector implications

- Energy: Focus on lower energy for FCCee a maximum of 365 GeV
 - Reduced calorimeter depth
 - Less collimated jets can potentially compromise on calorimeter compactness, granularity
- Need the beams to survive, and reach high luminosity
 - Limits on solenoidal field
 - Reduced momentum resolution at constant tracker size
 - Larger magnetic volume "affordable": A path to recover momentum resolution
- No bunch train structure: DC operation of the detector readout
 - Active cooling (or compromises on granularity, speed) required in many areas of the detector: Increased material, less compact construction of calorimeters

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLIC to CLD

TF1 Gaseous Detectors

Tracking and Calorimetry

- Two main areas of application: Tracking (TPC), Calorimetry ((semi-)digital HCAL); also muon system
- Gaseous tracking:

 - Low mass endplates: Light materials, low-power readout to reduce required material for cooling
- gaseous detectors currently only achievable with external Si tracking.
- Advances in all "*large-volume*" technologies (TPCs, Drift Chambers) highly beneficial
- (semi-) Digital hadron calorimetry
 - Primary technology RPCs, also MPGDs:
 - properties.
 - Requires eco-friendly gas solutions to enable long-term operation of large systems
 - \bullet
- RPCs also a prime candidate for muon system similar requirements as for calorimeter, but coarser

Detector R&D for Linear Collider Detectors - Snowmass e+e- Collider Forum, April 5 2022

• **TPCs**: Central challenge to reach high resolution in a robust way: controlling ExB effects, field distortions, eliminating ion backflow while keeping transparency. Particular challenge with increasing backgrounds. • General need for very low-mass tracking - while meeting resolution requirements for high momentum. For

• Scalability to very large areas: $\sim 10\ 000\ \text{m}^2$, while keeping uniformity of response and avalanche

Adding few 10 ps-level time resolution for some layers: Highly compact, scalable MRPC layers

TF3 Solid State Detectors

Vertexing, Tracking and Calorimetry

- Silicon is the "work horse" in LC detector concepts Vertex detector, main tracker, EM calorimetry
 - In general more challenging requirements for CLIC due to backgrounds, timing, but relevant across the board
- Vertex detectors:
 - Lowest possible mass, highest possible resolution: ~ 3 μm single point resolution <~0.2% X₀ per layer -> Air flow cooling only

 - Time resolution ~ 5 ns (or better) interesting additional potential when pushing to the ps range Advances in both *hybrid* and *monolithic* technologies needed - fine-pitch bump bonding, speed, ...
- Main trackers:
 - Low mass, high resolution: ~ 7 μm resolution, 1 2% X₀ / layer, ~5 ns timing, additional potential with ps level
- Calorimeters:
 - Very large areas: ~2500 m^2 -> Cost, scalability, production throughput key issues
 - ~ 1 ns timing additional potential when adding ps capability?
 - Forward calorimeters only: *Radiation hardness*: up to 7 MGy / year, 1.4 x 10¹⁴ n_{eq}/cm²/year

TF4 Photon Detectors and Particle Identification Detectors

Primarily for Calorimetry

- **SiPMs** central for calorimetry, scintillator-based muon detectors. Central requirements fulfilled:
 - sensitive to peak wavelength of plastic scintillators, adequate PDE
 - *moderate dark rate*, *(very) low cross talk* (< few %) to allow auto-trigger readout
 - Device-to-device uniformity to eliminate need of characterisation of each individual sensor
- \Rightarrow Further improvements in *scalability* (= cost), and all other parameters listed above beneficial
- **Particle ID** systems not integrated in baseline concepts; potential being studied intensely:
 - A word on *timing*: TOF difference for π/K: 10 ps @ 7.5 GeV; 1 ps @ 23.7 GeV
 - Cherenkov-based solutions: *Extreme compactness* to be fully compatible with PFA-optimised detector
- *dE/dx* in gaseous main tracker powerful potential in combination with TOF or others
- Lepton ID crucial expected to be covered by highly granular calorimetry + muon system

TF5 Quantum and Emerging Technologies

Largely speculation

- technological developments.
- Still: Significant potential to profit from new technologies
 - New sensor technologies / ideas
 - Novel materials
 - New strategies for data and power transfer for possible further material reduction and increased compactness
 - Additive manufacturing to improve scalability

. . .

• Over the last years the focus has been on the feasibility and system demonstration, less on following latest

TF6 Calorimetry A Focus on PFA

- Calorimetry is central to the "philosophy" of Linear Collider detectors optimised for Particle Flow reconstruction - The original motivation for highly granular ("imaging") calorimeter. Key performance demonstrated in test beams.
- Key topics for further development:
 - Scalability and cost-effective mass production
 - Silicon, Scintillator / SiPM, Gas detectors
 - **Performance improvements** (in particular in areas of clustering and hadronic resolution) with integration of new technical capabilities, such as *ps-level timing*, *novel optical materials, dual readout techniques* in high granularity; improved *electromagnetic resolution* in highly granular calorimeters Development of CMOS-based *digital ECAL* solutions \bullet

 - Central for all: *highest possible integration*: compact active layers, smallest mechanical tolerances, minimum volume for interfaces, smallest possible power consumption to avoid active cooling wherever possible, ...

Calorimetry drives developments in sensor and electronics areas - "ripple effects" for other TFs

TF7 Electronics and On-detector Processing

ASICs, Interfaces and Beyond

- Highly integrated electronics crucial for LC detectors, to enable required compactness and hermeticity
- ASICs central for all subsystems ultra-low power consumption a central theme
 - Optimised for *power-pulsing* however, suitability of such ASICs for beam tests, pre-installation calibration and cosmics data taking is a challenge.
 - Maximal integration requires modern technologies, *small feature size*: costly development, increasing demand on *verification*
- Compact interfaces high-density boards for services and communication between VFE and off-detector electronics
- Large-area multi-layer electronics boards with high mechanical precision, far beyond industry standards in particular for highly granular calorimeters
- DAQ requirements relatively benign ~100 MB of zero-suppressed data per bunch-train, up to ~5 GB/s Significantly higher for calibration runs without or with reduced zero suppression

TF8 Integration

- **Precision** and **stability** on all components and overall detector crucial to achieve ambitious precision goals of e⁺e⁻ colliders
- High compactness central for Linear Collider concepts:
 - Extreme demands on *overall integration*: mechanics, electronics, services \bullet
 - Minimal tolerances, for example highly *precise, earthquake-stable* calorimeter absorber structures
- System-level power-pulsing concepts with low-mass cables, compatible with magnetic field environment • **Reproducible alignment** after push-pull operations
- Extreme mechanical precision for machine-detector interface, combined with *fast feedback* and precise beam steering (nm precision) to maximise luminosity during bunch trains
 - Beam size ($\sigma_x \times \sigma_y$) 500 x 8 nm² (ILC 250 GeV) 40 x 1 nm² (CLIC 3 TeV), bunch trains at CLIC ~ 160 ns, at ILC ~ 700 μ s
- Low-mass support structures for trackers; tracker supports with integrated cooling building on significant R&D already performed
 - *Mechanical stability* in the presence *forced air cooling* in particular for vertex detectors \bullet

